×

Quantitative metric theory of continued fractions. (English) Zbl 1414.11091

Summary: Quantitative versions of the central results of the metric theory of continued fractions were given primarily by C. De Vroedt. In this paper we give improvements of the bounds involved . For a real number \(x\), let \[ x \;= \;c_{0} + \frac{1}{\displaystyle c_{1} + \frac{1}{\displaystyle c_{2} + \frac{1}{\displaystyle c_{3} + \frac{1}{\displaystyle c_{4} +_{\ddots}}}}}. \] A sample result we prove is that given \(\varepsilon > 0\), \[ \left (c_{1} (x) {\cdots} c_{n}(x) \right)^{\frac{1}{n}} = { \prod}_{k=1}^{\infty}\left (1+ \frac{1}{k(k+2)} \right)^{\frac{\log k}{ \log 2}} + o \left (n^{-\frac{1}{ 2}}(\log n)^{\frac{3}{ 2}} (\log \log n)^{\frac{1}{2}+\epsilon} \right) \] almost everywhere with respect to the Lebesgue measure.

MSC:

11K50 Metric theory of continued fractions
28D99 Measure-theoretic ergodic theory
Full Text: DOI

References:

[1] Cornfeld I P, Formin S V and Sinai Ya G, Ergodic Theory (1982) (Springer Verlag) · Zbl 0796.11031
[2] De Vroedt C, Measure-theoretic investigation concerning continued fractions, Indag. Math.24 (1962) 583-591 · Zbl 0126.08203 · doi:10.1016/S1385-7258(62)50059-0
[3] De Vroedt C, Metrical problems concerning continued fractions, Compositio Math.16 (1964) 191-195 · Zbl 0128.04901
[4] Doeblin W, Remarques sur la théorie métrique des fractions continues, Compositio Math.7 (1940) 353-371 · JFM 66.0616.04
[5] Doukhan P, Mixing. Properties and Examples, Lect. Notes. in Statist. 84 (1994) (New York: Springer-Verlag) · Zbl 0713.11038
[6] Hardy G H and Wright E, An Introduction to Number Theory (1979) (Oxford University Press) · Zbl 0020.29201
[7] Iosifescu M and Kraaikamp C, Metrical theory of continued fractions (2010) (Kluwer Academic Publishers) · Zbl 1122.11047
[8] Ito S, Nakada H and Tanaka S, On the invariant measure for the transformation associated with some real continued fractions, Keio Engineering Reports30 (1977) 159- 175 · Zbl 0412.10037
[9] Khinchin A Ya, Continued Fractions (Chicago: Univ. Chicago Press) (Translation of the 3rd Russian edition) · Zbl 0131.05005
[10] Koksma J F, Diophantische Approximationen (1936) (Berlin: Julius Springer) · JFM 62.0173.01
[11] Lévy P, Sur les lois de probabilité dont dépendent les quotients complets and incomplets d’une fraction continue, Bull. Soc. Math. France57 (1929) 178-194 · JFM 55.0916.02
[12] Nair R, On the metrical theory of continued fractions, Proc. Amer. Math. Soc.20 (1994) 1041-1046 · Zbl 0796.11031 · doi:10.1090/S0002-9939-1994-1176073-5
[13] Nolte V N, Some probabilistic results on the convergents of continued fractions, Indag. Math. (NS)1 (1990) 381-389 · Zbl 0713.11038 · doi:10.1016/0019-3577(90)90025-I
[14] Philipp W, Limit theorems for sums of partial quotients of continued fractions, Mh. Math.105 (1988) 195-206 · Zbl 0638.60039 · doi:10.1007/BF01636928
[15] Ryll-Nardzewski C, On the ergodic theorems II, Ergodic Theory of Continued Fractions, Studia Math.12 (1951) 74-79 · Zbl 0044.12401
[16] Samur J D, On some limit theorems for continued fractions, Trans. Amer. Math. Soc.316 (1989) 53-79 · Zbl 0676.60015 · doi:10.1090/S0002-9947-1989-0948197-9
[17] Samur J D, Some remarks on a probability limit theorem for continued fractions, Trans. Amer. Math. Soc.348 (1996) 1411-1428 · Zbl 0863.11048 · doi:10.1090/S0002-9947-96-01571-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.