×

On the metric theory of the nearest integer continued fraction expansion. (English) Zbl 0917.11033

Suppose \(k_n\) denotes either \(\phi(n)\) or \(\phi(p_n)\) (\(n=1,2,\dots\)), where the polynomial \(\phi\) maps the natural numbers to themselves, and \(p_k\) denote the \(k^{th}\) rational prime. Also let \(({r_n\over q_n})_{n=1}^\infty\) denote the sequence of convergents to a real number \(x\) and let \((c_n(x))_{n=1}^\infty\) be the corresponding sequence of partial quotients for the nearest integer continued fraction expansion. Define the sequence of approximation constants \((\theta_n(x))_{n=1}^\infty\) by \[ \theta_n(x)=q_n^2\left| x-{r_n\over q_n}\right| \quad(n=1,2,\dots). \] In this paper, the author studies the behaviour of the sequence \((\theta_{k_n}(x))_{n=1}^\infty\) and \((c_{k_n}(x))_{n=1}^\infty\) for almost all \(x\) with respect to the Lebesgue measure. In the special case where \(k_n=n\) (\(n=1,2,\dots\)) these results are known and due to H. Jager [Indag. Math. 48, 61-69 (1986; Zbl 0588.10061)] and G. J. Rieger [J. Reine Angew. Math. 310, 171-181 (1979; Zbl 0409.10038)] and others.

MSC:

11K50 Metric theory of continued fractions

References:

[1] Bourgain J (1989) Pointwise ergodic theorems for arithmetic sets. Publ. I. H. E. S.69: 5-45 · Zbl 0705.28008
[2] Cornfeld IP, Formin SV, Sinai YG (1982) Ergodic Theory. Berlin Heidelberg New York: Springer
[3] Hardy, GH, Wright E (1979) An Introduction to Number Theory. Oxford: Univ Press · Zbl 0423.10001
[4] Ito, S, Nakada H, Tanaka S (1981) On the invariant measure for the transformation associated with some real continued fractions. Keio Engineering Reports30: 61-69
[5] Jager H (1986) The distribution of certain sequences connected with the continued fraction. Indag Math48: 61-69 · Zbl 0588.10061
[6] Kraaikamp C (1987) The distribution of some sequences connected with the nearest integer continued fraction expansion. Indag Math49: 177-191 · Zbl 0626.10007
[7] Kraaikamp C (1993) Maximal S-expansions are Bernoulli shifts. Bull Soc Math France121: 117-131 · Zbl 0795.11030
[8] Nair R (1993) On Polynomials in primes and J. Bourgains’s circle method approach to ergodic theorems II. Studia Math105: 207-233 · Zbl 0871.11051
[9] Nair R (1994) On the metrical theory of continued fractions. Proc. Amer Math Soc120: 1041-1046 · Zbl 0796.11031 · doi:10.1090/S0002-9939-1994-1176073-5
[10] Perron O (1935) Die Lehre von den Kettenbr?chen, Band 1, 3. Aufl. Stuttgart: Teubner
[11] Rieger GJ (1979) Mischung und Ergodizit?t bei Kettenbr?chen nach n?chsten Ganzen. J reine angew Math310: 171-181 · Zbl 0409.10038 · doi:10.1515/crll.1979.310.171
[12] Rhin G (1975) Repartition modulo 1 def(p n) quandf est une series entire. Lect Notes Math475 176-244 · doi:10.1007/BFb0074265
[13] Walters P (1982) An Introduction to Ergodic Theory, pp 313-361
[14] Weyl H (1976) ?ber die Gleichverteilung von Zahlen mod. Eins Math Ann77: 313-361 · JFM 46.0278.06 · doi:10.1007/BF01475864
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.