×

Asymptotic analysis for the propagation and arresting process of a finite dry granular mass down a rough incline. (English) Zbl 1383.76523

Summary: This work presents an asymptotic analysis for the propagation and arresting process of a two-dimensional finite granular mass down a rough incline in a shallow configuration. Bulk shear stress and arresting mechanism are formulated according to the coherence length model that considers momentum transport at a length scale over which grains are spatially correlated. A Bagnold-like streamwise velocity and a non-zero transverse velocity are solved and integrated into a surface kinematic condition to give an advection-diffusion equation for the bulk surface profile, \(h(x,t)\), that is solved using the matched asymptotic method. These flow solutions are further employed to determine composite solutions for a flow-front trajectory and a local coherence length, \(l(x,t)\), which reveals smooth growth of \(h(x,t)\) and \(l(x,t)\) from zero at the propagating front with \(l(x,t)\ll h(x,t)\). At the rear, \(h(x,t)\) vanishes but \(l(x,t)\) asymptotes to a constant that depends on inclination angle. According to the arresting mechanism, the location where \(l(x,t)\sim h(x,t)\) is solved to the leading order to locate the deposition front so that its propagation dynamics can be derived. A finite flow arrest time, \(T_{d}\), and the corresponding finite run-out distance, \(L_{d}\), are evaluated when all the flowing mass has passed the deposition front and are employed to construct a modified front trajectory with the deposition effect. The predicted run-out distance and front trajectory profile compare reasonably well with experimental data in the literature on inclinations at angles higher than the material repose angle.

MSC:

76T25 Granular flows
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Ancey, C.; Cochard, S.; Andreini, N., The dam-break problem for viscous fluids in the high-capillary-number limit, J. Fluid Mech., 624, 1-22, (2009) · Zbl 1171.76349 · doi:10.1017/S0022112008005041
[2] Andreotti, B.; Forterre, Y.; Pouliquen, O., Granular Media: Between Fluid and Solid, (2013), Cambridge University Press · Zbl 1388.76001 · doi:10.1017/CBO9781139541008
[3] Aranson, I. S.; Tsimring, L. S., Continuum theory of partially fluidized granular flows, Phys. Rev. E, 65, (2002)
[4] Aranson, I. S.; Tsimring, L. S.; Malloggi, F.; Clément, E., Nonlocal rheological properties of granular flows near a jamming limit, Phys. Rev. E, 78, (2008)
[5] Bagnold, R. A., Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. R. Soc. Lond. A, 225, 1160, 49-63, (1954) · doi:10.1098/rspa.1954.0186
[6] Balmforth, N. J.; Kerswell, R. R., Granular collapse in two dimensions, J. Fluid Mech., 538, 399-428, (2005) · Zbl 1108.76303 · doi:10.1017/S0022112005005537
[7] Baran, O.; Ertaş, D.; Halsey, T. C.; Grest, G. S.; Lechman, J. B., Velocity correlations in dense gravity-driven granular chute flow, Phys. Rev. E, 74, (2006)
[8] Borzsonyi, T.; Halsey, T. C.; Ecke, R. E., Avalanche dynamics on a rough inclined plane, Phys. Rev. E, 78, (2008)
[9] Bouchaud, J. P.; Cates, M.; Prakash, J. R.; Edwards, S. F., A model for the dynamics of sandpile surfaces, J. Phys. (Paris) I, 4, 1383-1410, (1994)
[10] Boutreux, T.; Raphael, E.; De Gennes, P. G., Surface flows of granular materials: a modified picture for thick avalanches, Phys. Rev. E, 58, 4692-4700, (1998)
[11] Bouzid, M.; Trulsson, M.; Claudin, P.; Clément, E.; Andreotti, B., Nonlocal rheology of granular flows across yield conditions, Phys. Rev. Lett., 111, (2013) · doi:10.1103/PhysRevLett.111.238301
[12] Daerr, A., Dynamical equilibrium of avalanches on a rough plane, Phys. Fluids, 13, 2115-2124, (2001) · Zbl 1184.76118 · doi:10.1063/1.1377864
[13] Daerr, A.; Douady, S., Two types of avalanche behaviour in granular media, Nature, 399, 241-243, (1999) · doi:10.1038/20392
[14] Domnik, B.; Pudasaini, S. P., Full two-dimensional rapid chute flows of simple viscoplastic granular materials with pressure-dependent dynamic slip-velocity and their numerical simulations, J. Non-Newtonian Fluid Mech., 173, 72-86, (2012) · doi:10.1016/j.jnnfm.2012.03.001
[15] Domnik, B.; Pudasaini, S. P.; Katzenbach, R.; Miller, S. A., Coupling of full two-dimensional and depth-averaged models for granular flows, J. Non-Newtonian Fluid Mech., 201, 56-68, (2013) · doi:10.1016/j.jnnfm.2013.07.005
[16] Edwards, A. N.; Gray, J. M. N. T., Erosion – deposition waves in shallow granular free-surface flows, J. Fluid Mech., 762, 35-37, (2014) · doi:10.1017/jfm.2014.643
[17] Ertas, D.; Halsey, T. C., Granular gravitational collapse and chute flow, Eur. Phys. Lett., 60, 931-937, (2002) · doi:10.1209/epl/i2002-00307-8
[18] On dense granular flows, Eur. Phys. J. E, 14, 341-365, (2004)
[19] Gray, J. M. N. T.; Ancey, C., Segregation, recirculation and deposition of coarse particles near two-dimensional avalanche fronts, J. Fluid Mech., 629, 387-423, (2009) · Zbl 1181.76144 · doi:10.1017/S0022112009006466
[20] Gray, J. M. N. T.; Edwards, A. N., A depth-averaged 𝜇(I)-rheology for shallow granular free-surface flows, J. Fluid Mech., 755, 503-534, (2014) · Zbl 1330.76137 · doi:10.1017/jfm.2014.450
[21] Gray, J. M. N. T.; Wieland, M.; Hutter, K., Gravity-driven free surface flow of granular avalanches over complex basal topography, Phil. Trans. R. Soc. Lond. A, 455, 1985, 1841-1874, (1999) · Zbl 0951.76091
[22] Hogg, A. J., Two dimensional granular slumps down slopes, Phys. Fluids, 19, (2007) · Zbl 1182.76326 · doi:10.1063/1.2762254
[23] Huang, X.; Garcia, M. H., A Herschel-Bulkley model for mud flow down a slope, J. Fluid Mech., 374, 305-333, (1998) · Zbl 0928.76011 · doi:10.1017/S0022112098002845
[24] Hunt, B., Newtonian fluid mechanics treatment of debris flows and avalanches, J. Hydraul. Engng ASCE, 120, 1350-1363, (1994) · doi:10.1061/(ASCE)0733-9429(1994)120:12(1350)
[25] Iverson, R. M., The physics of debris flows, Rev. Geophys., 35, 3, 245-296, (1997) · doi:10.1029/97RG00426
[26] Jenkins, J. T., Dense shearing flows of inelastic disks, Phys. Fluids, 18, (2006) · doi:10.1063/1.2364168
[27] Kamrin, K.; Henann, D., Modeling the nonlocal behavior of granular flows down inclines, Soft Matt., 11, 179-185, (2015) · doi:10.1039/C4SM01838A
[28] Kamrin, K.; Koval, G., Nonlocal constitutive relation for steady granular flow, Phys. Rev. Lett., 108, (2012)
[29] Kokelaar, B. P.; Graham, R. L.; Gray, J. M. N. T.; Vallance, J. W., Fine-grained linings of leveed channels facilitate runout of granular flows, Earth Planet. Sci. Lett., 385, 172-180, (2014) · doi:10.1016/j.epsl.2013.10.043
[30] Kumaran, V., Dense granular flow down an inclined plane: from kinetic theory to granular dynamics, J. Fluid Mech., 599, 121-168, (2008) · Zbl 1151.76612 · doi:10.1017/S002211200700002X
[31] Louge, M. Y., Model for dense granular flows down bumpy inclines, Phys. Rev. E, 67, (2003)
[32] Mangeney-Castelnau, A.; Bouchut, F.; Vilotte, J. P.; Lajeunesse, E.; Aubertin, A.; Pirulli, M., On the use of Saint Venant equations to simulate the spreading of a granular mass, J. Geophys. Res., 110, B9, (2005) · doi:10.1029/2004JB003161
[33] Mangeney-Castelnau, A.; Roche, O.; Hungr, O.; Mangold, N.; Faccanoni, G.; Lucas, A., Erosion and mobility in granular collapse over sloping beds, J. Geophys. Res., 115, F3, (2010)
[34] Mills, P.; Loggia, D.; Tixier, M., Model for a stationary dense granular flow along an inclined wall, Eur. Phys. Lett., 45, 733-738, (1999) · doi:10.1209/epl/i1999-00229-y
[35] Pouliquen, O., Scaling laws in granular flows down rough inclined planes, Phys. Fluids, 11, 542-548, (1999) · Zbl 1147.76477 · doi:10.1063/1.869928
[36] Pouliquen, O., Velocity correlations in dense granular flows, Phys. Rev. Lett., 93, (2004) · doi:10.1103/PhysRevLett.93.248001
[37] Pouliquen, O.; Forterre, Y., Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane, J. Fluid Mech., 453, 133-151, (2002) · Zbl 0987.76522 · doi:10.1017/S0022112001006796
[38] Pouliquen, O.; Forterre, Y., A non-local rheology for dense granular flows, Phil. Trans. R. Soc. Lond. A, 367, 5091-5107, (2009) · Zbl 1192.76062 · doi:10.1098/rsta.2009.0171
[39] Pudasaini, S. P., Some exact solutions for debris and avalanche flows, Phys. Fluids, 23, (2011) · doi:10.1063/1.3570532
[40] Pudasaini, S. P.; Hutter, K., Rapid shear flows of dry granular masses down curved and twisted channels, J. Fluid Mech., 495, 193-208, (2003) · Zbl 1054.76083 · doi:10.1017/S0022112003006141
[41] Pudasaini, S. P.; Hutter, K., Avalanche Dynamics, Dynamics of Rapid Flows of Dense Granular Avalanches, (2007), Springer
[42] Pudasaini, S. P.; Wang, Y.; Hutter, K., Modelling debris flows down general channels, Nat. Hazards Earth Syst. Sci., 5, 6, 799-819, (2005) · doi:10.5194/nhess-5-799-2005
[43] Reddy, K. A.; Forterre, Y.; Pouliquen, O., Evidence of mechanically activated processes in slow granular flows, Phys. Rev. Lett., 106, (2011) · doi:10.1103/PhysRevLett.106.108301
[44] Savage, S. B.; Hutter, K., The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 374, 305-333, (1989) · Zbl 0659.76044
[45] Silbert, L.; Landry, J.; Grest, G., Granular flow down a rough inclined plane: transition between thin and thick piles, Phys. Fluids, 15, 1-10, (2003) · Zbl 1185.76343 · doi:10.1063/1.1521719
[46] Staron, L., Correlated motion in the bulk of dense granular flows, Phys. Rev. E, 77, (2008)
[47] Staron, L.; Lagre, P.-Y.; Josserand, C.; Lhuillier, D., Flow and jamming of a two-dimensional granular bed: toward a nonlocal rheology?, Phys. Fluids, 22, 11, (2010) · doi:10.1063/1.3499353
[48] Tai, Y.; Kuo, C. Y., A new model of granular flows over general topography with erosion and deposition, Acta Mechanica, 199, 71-96, (2008) · Zbl 1148.76058 · doi:10.1007/s00707-007-0560-7
[49] Whitham, G. B., Linear and Nonlinear Waves, (1974), Wiley · Zbl 0373.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.