×

Competition between kinematic and dynamic waves in floods on steep slopes. (English) Zbl 1189.76237

Summary: We present a theoretical stability analysis of the flow after the sudden release of a fixed mass of fluid on an inclined plane formally restricted to relatively long time scales, for which the kinematic regime is valid. Shallow-water equations for steep slopes with bed stress are employed to study the threshold for the onset of roll waves. An asymptotic solution for long-wave perturbations of small amplitude is found on background flows with a Froude number value of 2. Small disturbances are stable under this condition, with a linear decay rate independent of the wavelength and with a wavelength that increases linearly with time. For larger values of the Froude number it is shown that the basic flow moves at a different scale than the perturbations, and hence the wavelength of the unstable modes is characterized as a function of the plane-parallel Froude number \(Fr_{p}\) and a measure of the local slope of the free-surface height \(\phi \) by means of a multiple-scale analysis in space and time. The linear stability results obtained in the presence of small non-uniformities in the flow, \(\phi > 0\), introduce substantial differences with respect to the plane-parallel flow with \(\phi = 0\). In particular, we find that instabilities do not occur at Froude numbers \(Fr_{cr}\) much larger than the critical value 2 of the parallel case for some wavelength ranges. These results differ from that previously reported by Lighthill & Whitham (Proc. R. Soc. A, vol. 229, 1955, pp. 281-345), because of the fundamental role that the non-parallel, time-dependent characteristics of the kinematic-wave play in the behaviour of small disturbances, which was neglected in their stability analyses. The present work concludes with supporting numerical simulations of the evolution of small disturbances, within the framework of the frictional shallow-water equations, that are superimposed on a base state which is essentially a kinematic wave, complementing the asymptotic theory relevant near the onset. The numerical simulations corroborate the cutoff in wavelength for the spectrum that stabilizes the tail of the dam-break flood.

MSC:

76E20 Stability and instability of geophysical and astrophysical flows
86A05 Hydrology, hydrography, oceanography

Software:

WENOCLAW
Full Text: DOI

References:

[1] Lauber, J. Hydraul. Res. 36 pp 291– (1998)
[2] Lauber, J. Hydraul. Res. 36 pp 761– (1998)
[3] DOI: 10.1002/hyp.6858 · doi:10.1002/hyp.6858
[4] DOI: 10.1007/978-3-540-75712-2_60 · doi:10.1007/978-3-540-75712-2_60
[5] DOI: 10.1016/j.jhydrol.2008.07.043 · doi:10.1016/j.jhydrol.2008.07.043
[6] Jeffreys, Phil. Mag. 49 pp 793– (1925) · doi:10.1080/14786442508634662
[7] Bohorquez, Numerical Modelling of Hydrodynamics for Water Resources pp 355– (2008)
[8] DOI: 10.1016/j.ocemod.2004.07.001 · doi:10.1016/j.ocemod.2004.07.001
[9] Jánosi, Exp. Fluids 37 pp 219– (2004)
[10] DOI: 10.1017/S0022112004009930 · Zbl 1067.76009 · doi:10.1017/S0022112004009930
[11] DOI: 10.1063/1.866292 · Zbl 0641.76055 · doi:10.1063/1.866292
[12] DOI: 10.1007/BF02594995 · doi:10.1007/BF02594995
[13] Hunt, J. Hydraul. Res. 25 pp 313– (1987)
[14] DOI: 10.1029/2007WR006353 · doi:10.1029/2007WR006353
[15] DOI: 10.1061/(ASCE)0733-9429(1984)110:8(1058) · doi:10.1061/(ASCE)0733-9429(1984)110:8(1058)
[16] DOI: 10.1017/S0022112008005041 · Zbl 1171.76349 · doi:10.1017/S0022112008005041
[17] Hunt, J. Hydraul. Div. 108 pp 115– (1982)
[18] DOI: 10.1016/j.jnnfm.2006.05.005 · Zbl 1143.76315 · doi:10.1016/j.jnnfm.2006.05.005
[19] DOI: 10.1017/S0022112003007468 · Zbl 1074.76010 · doi:10.1017/S0022112003007468
[20] DOI: 10.1029/2005RG000175 · doi:10.1029/2005RG000175
[21] DOI: 10.1017/S0022112006002588 · Zbl 1177.76047 · doi:10.1017/S0022112006002588
[22] DOI: 10.1007/s10915-008-9239-z · Zbl 1203.65135 · doi:10.1007/s10915-008-9239-z
[23] DOI: 10.1017/S0022112092002830 · Zbl 0755.76031 · doi:10.1017/S0022112092002830
[24] DOI: 10.1017/S0022112062001184 · Zbl 0108.20503 · doi:10.1017/S0022112062001184
[25] DOI: 10.1016/j.jcp.2005.02.006 · Zbl 1114.76340 · doi:10.1016/j.jcp.2005.02.006
[26] DOI: 10.1007/s10665-006-9034-5 · Zbl 1095.76011 · doi:10.1007/s10665-006-9034-5
[27] Whitham, Linear and Nonlinear Waves (1974)
[28] Eguiazaroff, XVI International Congress of Navigation (1935)
[29] DOI: 10.1098/rspa.1955.0019 · Zbl 0064.19804 · doi:10.1098/rspa.1955.0019
[30] DOI: 10.1016/j.jcp.2007.12.005 · Zbl 1142.65070 · doi:10.1016/j.jcp.2007.12.005
[31] DOI: 10.1098/rspa.1983.0069 · Zbl 0544.76020 · doi:10.1098/rspa.1983.0069
[32] Dressler, J. Hydraul. Res. 16 pp 205– (1978)
[33] DOI: 10.1137/070679065 · Zbl 1160.65330 · doi:10.1137/070679065
[34] DOI: 10.1098/rspa.1958.0177 · Zbl 0081.20302 · doi:10.1098/rspa.1958.0177
[35] Schoklistsch, Sitzber Akad. Wiss. Wien. 126 pp 1489– (1917)
[36] Dressler, Assemblée Général de Rome pp 319– (1954)
[37] Schmid, Stability and Transition in Shear Flows (2001) · Zbl 0966.76003 · doi:10.1007/978-1-4613-0185-1
[38] Dressler, J. Res. Natl Bur. Stand. 49 pp 217– (1952) · doi:10.6028/jres.049.021
[39] DOI: 10.1146/annurev.fluid.38.050304.092139 · doi:10.1146/annurev.fluid.38.050304.092139
[40] de Saint-Venant, C. R. Acad. Sci. Paris 73 pp 147– (1871)
[41] DOI: 10.1002/cpa.3160020203 · Zbl 0038.38405 · doi:10.1002/cpa.3160020203
[42] DOI: 10.1061/(ASCE)0733-9429(2008)134:11(1590) · doi:10.1061/(ASCE)0733-9429(2008)134:11(1590)
[43] Ruyer-Quil, Wave Dynamics and Stability of Thin Film Flow Systems pp 106– (2006)
[44] DOI: 10.1134/1.1922566 · doi:10.1134/1.1922566
[45] Ritter, Z. Verein. Deutch. Ing. 36 pp 947– (1892)
[46] DOI: 10.1016/j.jcp.2004.04.012 · Zbl 1115.76364 · doi:10.1016/j.jcp.2004.04.012
[47] DOI: 10.1017/S002211209100126X · Zbl 0731.76022 · doi:10.1017/S002211209100126X
[48] DOI: 10.1063/1.1287659 · Zbl 1184.76094 · doi:10.1063/1.1287659
[49] DOI: 10.1017/S0022112005006518 · Zbl 1080.76065 · doi:10.1017/S0022112005006518
[50] DOI: 10.1016/j.jcp.2008.05.012 · Zbl 1176.76084 · doi:10.1016/j.jcp.2008.05.012
[51] DOI: 10.1016/j.jcp.2007.03.031 · Zbl 1120.76046 · doi:10.1016/j.jcp.2007.03.031
[52] DOI: 10.1090/S0025-5718-06-01851-5 · Zbl 1096.65082 · doi:10.1090/S0025-5718-06-01851-5
[53] DOI: 10.1098/rspa.1984.0079 · Zbl 0553.76013 · doi:10.1098/rspa.1984.0079
[54] DOI: 10.1017/S0022112099006084 · Zbl 0971.76052 · doi:10.1017/S0022112099006084
[55] DOI: 10.1098/rsta.1952.0006 · doi:10.1098/rsta.1952.0006
[56] Brock, J. Hydraul. Div. 95 pp 1401– (1969)
[57] DOI: 10.1016/0017-9310(82)90238-1 · doi:10.1016/0017-9310(82)90238-1
[58] DOI: 10.1098/rspa.1955.0088 · Zbl 0064.20905 · doi:10.1098/rspa.1955.0088
[59] DOI: 10.1002/pamm.200610284 · doi:10.1002/pamm.200610284
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.