×

Some algorithmic results for [2]-sumset covers. (English) Zbl 1366.68088

Summary: Let \(X=\{x_i:1\leq i\leq n\}\subset\mathbb N^+\), and \(h\in\mathbb N^+\). The \(h\)-iterated sumset of \(X\), denoted \(hX\), is the set \(\{x_1+x_2+\dots +x_h:x_1,x_2,\dots,x_h\in X\}\), and the \([h]\)-sumset of X, denoted \([h] X\), is the set \(\bigcup_{i = 1}^h i X\). A \([h]\)-sumset cover of \(S\subset\mathbb N^+\) is a set \(X\subset\mathbb N^+\) such that \(S\subseteq [h]X\). In this paper, we focus on the case \(h=2\), and study the \(\mathbf{APX}\)-hard problem of computing a minimum cardinality [2]-sumset cover \(X\) of \(S\) (i.e. computing a minimum cardinality set \(X\subset\mathbb N^+\) such that every element of \(S\) is either an element of \(X\), or the sum of two – non-necessarily distinct – elements of \(X\)). We propose two new algorithmic results. First, we give a fixed-parameter tractable (FPT) algorithm that decides the existence of a [2]-sumset cover of size at most \(k\) of a given set \(S\). Our algorithm runs in \(O(2^{(3\log k-1.4)k}\text{poly}(k))\) time, and thus outperforms the \(O(5^{\frac{k^2(k+3)}{2}}k^2\log (k))\) time FPT result presented in [I. Fagnot et al., Lect. Notes Comput. Sci. 5609, 378–387 (2009; Zbl 1248.68362)]. Second, we show that deciding whether a set \(S\) has a smaller [2]-sumset cover than itself is \(\mathbf{NP}\)-hard.

MSC:

68Q25 Analysis of algorithms and problem complexity
68Q17 Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.)
68W05 Nonnumerical algorithms

Citations:

Zbl 1248.68362

References:

[1] Alter, R.; Barnett, J. A., A postage stamp problem, Am. Math. Mon., 87, 206-210 (1980) · Zbl 0432.10032
[2] Cieliebak, M.; Eidenbenz, S.; Pagourtzis, A.; Schlude, K., On the complexity of variations of equal sum subsets, Nord. J. Comput., 14, 3, 151-172 (2008) · Zbl 1187.68248
[3] Collins, M. J.; Kempe, D.; Saia, J.; Young, M., Nonnegative integral subset representations of integer sets, Inf. Process. Lett., 101, 3, 129-133 (2007) · Zbl 1185.68854
[4] Develin, M., Optimal subset representations of integer sets, J. Number Theory, 89, 212-221 (2001) · Zbl 0997.11023
[5] Fagnot, I.; Fertin, G.; Vialette, S., On finding small 2-generating sets, (Proc. 15th Annual International Conference (COCOON). Proc. 15th Annual International Conference (COCOON), Lect. Notes Comput. Sci., vol. 5609 (2009)), 378-387 · Zbl 1248.68362
[6] Fitch, M. A.; Jamison, R. E., Minimum sum covers of small cyclic groups, Congr. Numer., 147, 65-81 (2000) · Zbl 0983.20051
[7] Haanpää, H., Minimum sum and difference covers of abelian groups, J. Integer Seq., 7, 2 (2004), Article 04.2.6 · Zbl 1068.11016
[8] Haanpää, H.; Huima, A.; Östergård, P. R.J., Sets in \(Z_n\) with distinct sums of pairs, Discrete Appl. Math., 138, 1-2, 99-106 (2004) · Zbl 1035.05021
[9] Hermelin, D.; Rawitz, D.; Rizzi, R.; Vialette, S., The minimum substring cover problem, Inf. Comput., 206, 11, 1303-1312 (2008) · Zbl 1162.90592
[10] Moser, L., On the representation of \(1, 2, \ldots, n\) by sums, Acta Arith., 6, 11-13 (1960) · Zbl 0104.03803
[11] Moulton, D.; Petrie, D., Representing powers of numbers as subset sums of small sets, J. Number Theory, 89, 193-211 (2001) · Zbl 0997.11022
[12] Nathanson, M. B., Additive Number Theory: The Classical Bases, Grad. Texts Math., vol. 164 (1996), Springer-Verlag · Zbl 0859.11002
[13] Stöhr, A., Gelöste und ungelöste fragen über basen der natürlichen zahlenreihe, I, J. Reine Angew. Math., 194, 40-65 (1955) · Zbl 0066.03101
[14] Stöhr, A., Gelöste und ungelöste fragen über basen der natürlichen zahlenreihe, II, J. Reine Angew. Math., 194, 111-140 (1955) · Zbl 0066.03101
[15] Swanson, C. N., Planar cyclic difference packings, J. Comb. Des., 8, 426-434 (2000) · Zbl 0960.05027
[16] Tao, T.; Vu, V. H., Additive Combinatorics, Camb. Stud. Adv. Math., vol. 105 (2006), Cambridge University Press · Zbl 1127.11002
[17] Tripathi, A., A note on the postage stamp problem, J. Integer Seq., 9, 06.013 (2006) · Zbl 1177.11014
[18] Wiedemann, D., Cyclic difference covers through 133, Congr. Numer., 90, 181-185 (1992) · Zbl 0786.05013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.