×

Periodic traveling wave solutions of discrete nonlinear Klein-Gordon lattices. (English) Zbl 1534.37003

Summary: We prove the existence of periodic traveling wave solutions for general discrete nonlinear Klein-Gordon systems, considering both cases of hard and soft on-site potentials. In the case of hard on-site potentials, we implement a fixed-point theory approach, combining Schauder’s fixed-point theorem and the contraction mapping principle. This approach enables us to identify a ring in the energy space for nontrivial solutions to exist, energy (norm) thresholds for their existence, and upper bounds on their velocity. In the case of soft on-site potentials, the proof of existence of periodic traveling wave solutions is facilitated by a variational approach based on the mountain pass theorem. Thresholds on the averaged kinetic energy for these solutions to exist are also derived.
© 2023 John Wiley & Sons, Ltd.

MSC:

37K60 Lattice dynamics; integrable lattice equations
37L60 Lattice dynamics and infinite-dimensional dissipative dynamical systems
35Q55 NLS equations (nonlinear Schrödinger equations)
35Q51 Soliton equations

References:

[1] O. M.Braun and Y. S.Kivshar, The Frenkel‐Kontorova model: concepts, methods and applications, Texts and Monographs in Physics, Springer‐Verlag, Berlin Heidelberg, 2004. · Zbl 1140.82001
[2] P. G.Kevredikis, The nonlinear discrete Schrödinger equation: mathematical analysis, numerial computations, and physical perspectives, Springer‐Verlag, 2009. · Zbl 1169.35004
[3] D. B.Duncan, J. C.Eilbeck, H.Feddersen, and J. A. D.Wattis, Solitons on lattices, Phys. D.68 (1993), 1-11. · Zbl 0785.35087
[4] J. C.Eilbeck and M.Johansson, The discrete nonlinear Schrödinger equation—20 years on, Localization and energy transfer in nonlinear systems, L.Vázquez (ed.), R. S.MacKay (ed.), and M. P.Zorzano (ed.), (eds.), World Scientific, Singapore, 2003, pp. 44-67. · Zbl 1032.81007
[5] T. R. O.Melvin, A. R.Champneys, P. G.Kevrekidis, and J.Cuevas, Radiationless travelling waves in saturable nonlinear Schrödinger lattices, Phys. Rev. Lett.97 (2006), 124101.
[6] G.Friesecke and J. A. D.Wattis, Existence theorem for travelling waves on lattices, Comm. Math. Phys.161 (1994), 391-418. · Zbl 0807.35121
[7] M.Willem and D.Smets, Solitary waves with prescribed speed on lattices, J. Funct. Anal.149 (1997), 266-275. · Zbl 0889.34059
[8] A.Pankov and K.Pflüger, Travelling waves in lattice dynamical systems, Math. Meth. Appl. Sc.23 (2000), 1223-1235. · Zbl 0963.37072
[9] A.Pankov and N.Zakharchenko, On some discrete variational problems, Special issue dedicated to Antonio Avantaggiati on the occasion of his 70th birthday, Acta Appl. Math.65 (2001), 295-303. · Zbl 0993.39011
[10] A.Pankov, Traveling waves in Fermi‐Pasta‐Ulam chains with nonlocal interaction, Discrete Contin. Dyn. Syst. Ser. S12 (2019), 2097-2113. · Zbl 1422.37054
[11] A.Pankov, Solitary waves on nonlocal Fermi‐Pasta‐Ulam lattices: exponential localization, Nonlinear Anal. Real World Appl.50 (2019), 603-612. · Zbl 1510.34031
[12] A.Pankov and V.Rothos, Traveling waves in Fermi‐Pasta‐Ulam lattices with saturable nonlinearities, Discrete Contin. Dyn. Syst.30 (2011), 835-849. · Zbl 1218.37109
[13] M.Herrmann, Periodic travelling waves in convex Klein‐Gordon chains, Nonlinear Anal.71 (2009), 5501-5508. · Zbl 1175.37075
[14] M.Fečkan and V. M.Rothos, Traveling waves of discrete nonlinear Schrödinger equations with nonlocal interactions, Appl. Anal.89 (2010), 1387-1411. · Zbl 1215.34010
[15] C. F.Kreiner and J.Zimmer, Travelling wave solutions for the discrete sine‐Gordon equation with nonlinear pair interaction, Nonlinear Anal.70 (2009), 3146-3158. · Zbl 1160.37415
[16] G.Iooss and K.Kirchgässner, Travelling waves in a chain of coupled nonlinear oscillators, Comm. Math. Phys.211 (2000), 439-464. · Zbl 0956.37055
[17] G.James, Nonlinear waves in Newton’s cradle and the discrete p‐Schrödinger equation, Math. Models Methods Appl. Sci.21 (2011), 2335-2377. · Zbl 1331.70042
[18] R.Mirollo and N.Rosen, Existence, uniqueness, and nonuniqueness of single‐wave‐form solutions to Josephson junction systems, SIAM J. Appl. Math.60 (2000), 1471-1501. · Zbl 0958.34034
[19] G.Katriel, Existence of travelling waves in discrete sine‐Gordon rings, SIAM J. Math. Anal.36 (2005), 1434-1443. · Zbl 1086.34027
[20] J.Cuevas, J. C.Eilbeck, and N. I.Karachalios, A lower bound for the power of periodic solutions of the defocusing discrete nonlinear Schrödinger equation, Dyn. Partial Differ. Equ.5 (2008), no. 1, 69-85. · Zbl 1144.37035
[21] J.Cuevas, J. C.Eilbeck, and N. I.Karachalios, Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity, Discrete Contin. Dyn. Syst.21 (2008), no. 2, 445-475. · Zbl 1148.37039
[22] J.Cuevas, N. I.Karachalios, and F.Palmero, Energy thresholds for the existence of breather solutions and travelling waves on lattices,Appl. Anal.89 (2010), 1351-1385. · Zbl 1193.37104
[23] A. A.Pankov, Travelling waves and periodic oscillations in Fermi‐Pasta‐Ulam lattices, Imperial College Press, London, (2005). · Zbl 1088.35001
[24] G.James and D.Pelinovsky, Gaussian solitary waves and compactons in Fermi‐Pasta‐Ulam lattices with Hertzian potential, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.470 (2014), no. 2165, 20130462. · Zbl 1371.37130
[25] D.Hennig, Localised time‐periodic solutions of discrete nonlinear Klein‐Gordon systems with convex on‐site potentials, J. Fixed Point Theory Appl.23 (2021), 31-38. · Zbl 1476.34049
[26] D.Hennig and N. I.Karachalios, Existence of exponentially spatially localized breather solutions for lattices of nonlinearly coupled particles: Schauder’s fixed point theorem approach, J. Math. Phys.62 (2021), 123506. · Zbl 1493.37088
[27] S.Flach, K.Kladko, and R. S.MacKay, Energy thresholds for discrete breathers in one‐, two‐, and three‐dimensional lattices, Phys. Rev. Lett.78 (1997), 1207-1210.
[28] M.Weinstein, Excitation thresholds for nonlinear localized modes on lattices, Nonlinearity12 (1997), 673-691. · Zbl 0984.35147
[29] N. I.Karachalios, B.Sánchez‐Rey, P. G.Kevrekidis, and J.Cuevas, Beathers for the discrete nonlinear Schrödinger equation with nonlinear hopping, J. Nonlinear Sci.23 (2013), 205-239. · Zbl 1323.37047
[30] T.Cretegny, T.Dauxois, S.Ruffo, and A.Torcini, Localization and equipartition of energy in
[( \beta \]\)‐FPU chain: chaotic breathers, Phys. D121 (1998), 109-126.
[31] P.Christiansen, Yu. L., B.Gaididei, V. K.Mezentsev, S. L.Musher, K. Ø.Rasmussen, I. V.Ryzhenkova, and S. K.Turitsyn, Discrete localized states and localization dynamics in discrete nonlinear Schrödinger equations, Phys. Scr. Vol. T67 (1996), 160-166.
[32] B.Zinner, G.Harris, and W.Hudson, Traveling wavefronts for the discrete Fisher’s equation, J. Differ. Equ.105 (1993), 46-92. · Zbl 0778.34006
[33] S.‐N.Chow, J.Mallet‐Paret, and W.Shen, Traveling waves in lattice dynamical systems, J. Differ. Equ.149 (1998), 248-291. · Zbl 0911.34050
[34] J.Mallet‐Paret, The global structure of traveling waves in spatially discrete dynamical systems, J. Dynam. Differ. Equ.11 (1999), 49-127. · Zbl 0921.34046
[35] ACarpio, S. J.Chapman, S.Hastings, and J. B.McLeod, Wave solutions for a discrete reaction‐diffusion equation, European J. Appl. Math.11 (2000), 399-412. · Zbl 0968.35059
[36] P. W.Bates, X.Chen, and A.Chmaj, Traveling waves of bistable dynamics on a lattice, SIAM J. Math. Anal.35 (2003), 520. · Zbl 1050.37041
[37] X.Chen, J.‐S.Guo, and C.‐C.Wu, Traveling waves in discrete periodic media for bistable dynamics, Arch. Rational Mech. Anal.189 (2008), 189-236. · Zbl 1152.37033
[38] J. S.Guo and Y. C.Lin, Traveling wave solution for a lattice dynamical system with convolution type nonlinearity, Discrete Contin. Dyn. Syst.32 (2012), 101-124. · Zbl 1245.34079
[39] D.Bettinson and G.Rowlands, Transverse stability of the one‐dimensional kink solution of the discrete Cahn‐Hilliard equation, Phys. Rev. E57 (1998), 169-178.
[40] A.Ambrosetti and P. H.Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973), 349-381. · Zbl 0273.49063
[41] S. N.Chow and J. K.Hale, Methods of bifurcation theory, Grundlehren der mathematischen Wissenschaften—A Series of Comprehensive Studies in Mathematics, Vol. 251, Springer‐Verlag, New York, 1982. · Zbl 0487.47039
[42] E.Zeidler, Nonlinear functional analysis and its applications I: fixed point theorems, Springer‐Verlag, New York, 1986. · Zbl 0583.47050
[43] E.Zeidler, Nonlinear functional analysis and its applications II/A: linear monotone operators, Springer‐Verlag, New York, 1990. · Zbl 0684.47029
[44] J.Bergh and J.Löfström, Interpolation spaces, Springer, New‐York, 1976. · Zbl 0344.46071
[45] S.Saitoh, K.Watanabe, T.Yamada, and W.Takahashi, Reproducing kernels of
[( {H}^m\left(a,b\right) , \left(m=1,2,3\right) \]\) and least constants in Sobolev’s inequalities, Appl. Anal.82 (2003), 809-820. · Zbl 1051.46021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.