×

Effect of geometry and Reynolds number on the turbulent separated flow behind a bulge in a channel. (English) Zbl 1422.76077

Summary: Turbulent flow separation induced by a protuberance on one of the walls of an otherwise planar channel is investigated using direct numerical simulations. Different bulge geometries and Reynolds numbers - with the highest friction Reynolds number simulation reaching a peak of \(Re_{\tau}=900\) - are addressed to understand the effect of the wall curvature and of the Reynolds number on the dynamics of the recirculating bubble behind the bump. Global quantities reveal that most of the drag is due to the form contribution, whilst the friction contribution does not change appreciably with respect to an equivalent planar channel flow. The size and position of the separation bubble strongly depends on the bump shape and the Reynolds number. The most bluff geometry has a larger recirculation region, whilst the Reynolds number increase results in a smaller recirculation bubble and a shear layer more attached to the bump. The position of the reattachment point only depends on the Reynolds number, in agreement with experimental data available in the literature. Both the mean and the turbulent kinetic energy equations are addressed in such non-homogeneous conditions revealing a non-trivial behaviour of the energy fluxes. The energy introduced by the pressure drop follows two routes: part of it is transferred towards the walls to be dissipated and part feeds the turbulent production hence the velocity fluctuations in the separating shear layer. Spatial energy fluxes transfer the kinetic energy into the recirculation bubble and downstream near the wall where it is ultimately dissipated. Consistently, anisotropy concentrates at small scales near the walls irrespective of the value of the Reynolds number. In the bulk flow and in the recirculation bubble, isotropy is restored at small scales and the isotropy recovery rate is controlled by the Reynolds number. Anisotropy invariant maps are presented, showing the difficulty in developing suitable turbulence models to predict separated turbulent flow dynamics. Results shed light on the processes of production, transfer and dissipation of energy in this relatively complex turbulent flow where non-homogeneous effects overwhelm the classical picture of wall-bounded turbulent flows which typically exploits streamwise homogeneity.

MSC:

76F10 Shear flows and turbulence
76F65 Direct numerical and large eddy simulation of turbulence

Software:

Nek5000

References:

[1] Alam, M.; Sandham, N. D., Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment, J. Fluid Mech., 403, 223-250, (2000) · Zbl 0972.76049 · doi:10.1017/S0022112099007119
[2] Antonia, R. A.; Djenidi, L.; Spalart, P. R., Anisotropy of the dissipation tensor in a turbulent boundary layer, Phys. Fluids, 6, 7, 2475-2479, (1994) · Zbl 0825.76322 · doi:10.1063/1.868195
[3] Bai, H. L.; Zhou, Y.; Zhang, W. G.; Xu, S. J.; Wang, Y.; Antonia, R. A., Active control of a turbulent boundary layer based on local surface perturbation, J. Fluid Mech., 750, 316-354, (2014) · doi:10.1017/jfm.2014.261
[4] Breuer, M.; Peller, N.; Rapp, Ch.; Manhart, M., Flow over periodic hills – numerical and experimental study in a wide range of Reynolds numbers, Computers Fluids, 38, 2, 433-457, (2009) · Zbl 1237.76026 · doi:10.1016/j.compfluid.2008.05.002
[5] Casciola, C. M.; Gualtieri, P.; Benzi, R.; Piva, R., Scale-by-scale budget and similarity laws for shear turbulence, J. Fluid Mech., 476, 105-114, (2003) · Zbl 1163.76375 · doi:10.1017/S0022112002003142
[6] Casciola, C. M.; Gualtieri, P.; Jacob, B.; Piva, R., The residual anisotropy at small scales in high shear turbulence, Phys. Fluids, 19, 10, (2007) · Zbl 1182.76124 · doi:10.1063/1.2800043
[7] Castro, I. P.; Epik, E., Boundary layer development after a separated region, J. Fluid Mech., 374, 91-116, (1998) · Zbl 0941.76513 · doi:10.1017/S0022112098002420
[8] Chen, J.; Meneveau, C.; Katz, J., Scale interactions of turbulence subjected to a straining – relaxation – destraining cycle, J. Fluid Mech., 562, 123-150, (2006) · Zbl 1157.76301 · doi:10.1017/S0022112006000905
[9] Chong, M. S.; Soria, J.; Perry, A. E.; Chacin, J.; Cantwell, B. J.; Na, Y., Turbulence structures of wall-bounded shear flows found using DNS data, J. Fluid Mech., 357, 225-247, (1998) · Zbl 0908.76039 · doi:10.1017/S0022112097008057
[10] Cimarelli, A.; De Angelis, E.; Casciola, C. M., Paths of energy in turbulent channel flows, J. Fluid Mech., 715, 436-451, (2013) · Zbl 1284.76193 · doi:10.1017/jfm.2012.528
[11] Corrsin, Stanley, Local Isotropy in Turbulent Shear Flow, (1958), National Advisory Committee for Aeronautics · Zbl 0086.40801
[12] Dengel, P.; Fernholz, H. H., An experimental investigation of an incompressible turbulent boundary layer in the vicinity of separation, J. Fluid Mech., 212, 615-636, (1990) · doi:10.1017/S0022112090002117
[13] Diosady, L. T. & Murman, S. M.2014Dns of flows over periodic hills using a discontinuous galerkin spectral-element method. AIAA Paper 2014-2784.
[14] Elsberry, K.; Loeffler, J.; Zhou, M. D.; Wygnanski, I., An experimental study of a boundary layer that is maintained on the verge of separation, J. Fluid Mech., 423, 227-261, (2000) · Zbl 0961.76505 · doi:10.1017/S0022112000001828
[15] Epstein, F. H.; Ross, R., Atherosclerosis – an inflammatory disease, New England J. Med., 340, 2, 115-126, (1999) · doi:10.1056/NEJM199901143400207
[16] Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008 nek5000 web page. Web page http://nek5000mcs.anl.gov.
[17] Fröhlich, J.; Mellen, C. P.; Rodi, W.; Temmerman, L.; Leschziner, M. A., Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions, J. Fluid Mech., 526, 19-66, (2005) · Zbl 1065.76116 · doi:10.1017/S0022112004002812
[18] Gatski, T. B.; Speziale, C. G., On explicit algebraic stress models for complex turbulent flows, J. Fluid Mech., 254, 59-78, (1993) · Zbl 0781.76052 · doi:10.1017/S0022112093002034
[19] Gilbert, N. & Kleiser, L.1991Turbulence model testing with the aid of direct numerical simulation results. In 8th Symposium on Turbulent Shear Flows (ed. Braza, M. & Nogues, G.), vol. 2, p. 26-1. Springer.
[20] Gualtieri, P.; Casciola, C. M.; Benzi, R.; Piva, R., Preservation of statistical properties in large-eddy simulation of shear turbulence, J. Fluid Mech., 592, 471-494, (2007) · Zbl 1145.76026 · doi:10.1017/S0022112007008609
[21] Gualtieri, P.; Meneveau, C., Direct numerical simulations of turbulence subjected to a straining and destraining cycle, Phys. Fluids, 22, 6, (2010) · Zbl 1190.76046 · doi:10.1063/1.3453709
[22] Harun, Z.; Monty, J. P.; Mathis, R.; Marusic, I., Pressure gradient effects on the large-scale structure of turbulent boundary layers, J. Fluid Mech., 715, 477-498, (2013) · Zbl 1284.76203 · doi:10.1017/jfm.2012.531
[23] Hickel, S.; Kempe, T.; Adams, N. A., Implicit large-eddy simulation applied to turbulent channel flow with periodic constrictions, Theor. Comput. Fluid Dyn., 22, 3-4, 227-242, (2008) · Zbl 1161.76497 · doi:10.1007/s00162-007-0069-7
[24] Jacob, B.; Casciola, C. M.; Talamelli, A.; Alfredsson, P. H., Scaling of mixed structure functions in turbulent boundary layers, Phys. Fluids, 20, 4, (2008) · Zbl 1182.76346 · doi:10.1063/1.2898659
[25] Jovanovic, J., The Statistical Dynamics of Turbulence, (2013), Springer Science & Business Media
[26] Jovičić, N.; Breuer, M.; Jovanović, J., Anisotropy-invariant mapping of turbulence in a flow past an unswept airfoil at high angle of attack, J. Fluids Engng, 128, 3, 559-567, (2006) · doi:10.1115/1.2175162
[27] Kähler, C. J.; Scharnowski, S.; Cierpka, C., Highly resolved experimental results of the separated flow in a channel with streamwise periodic constrictions, J. Fluid Mech., 796, 257-284, (2016) · doi:10.1017/jfm.2016.250
[28] Kim, J.; Moin, P.; Moser, R., Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech., 177, 133-166, (1987) · Zbl 0616.76071 · doi:10.1017/S0022112087000892
[29] Krogstad, P. A.; Skaare, P. E., Influence of the strong adverse pressure gradient on the turbulent structure in a boundary layer, Phys. Fluids, 7, 8, 2014-2024, (1995) · doi:10.1063/1.868513
[30] Kuban, L.; Laval, J.-P.; Elsner, W.; Tyliszczak, A.; Marquillie, M., Les modeling of converging-diverging turbulent channel flow, J. Turbul., 13, N11, (2012) · doi:10.1080/14685248.2012.661062
[31] Kumar, V.; Frohnapfel, B.; Jovanović, J.; Breuer, M.; Zuo, W.; Hadzić, I.; Lechner, R., Anisotropy invariant Reynolds stress model of turbulence (airsm) and its application to attached and separated wall-bounded flows, Flow Turbul. Combust., 83, 1, 81-103, (2009) · Zbl 1259.76016 · doi:10.1007/s10494-008-9190-y
[32] Laval, J.-P.; Marquillie, M.; Ehrenstein, U., On the relation between kinetic energy production in adverse-pressure gradient wall turbulence and streak instability, J. Turbul., 13, N21, (2012) · doi:10.1080/14685248.2012.687110
[33] Le, H.; Moin, P.; Kim, J., Direct numerical simulation of turbulent flow over a backward-facing step, J. Fluid Mech., 330, 349-374, (1997) · Zbl 0900.76367 · doi:10.1017/S0022112096003941
[34] Lee, M. J.; Kim, J.; Moin, P., Structure of turbulence at high shear rate, J. Fluid Mech., 216, 561-583, (1990) · doi:10.1017/S0022112090000532
[35] Lozano-Durán, A.; Jiménez, J., Effect of the computational domain on direct simulations of turbulent channels up to re_𝜏 = 4200, Phys. Fluids, 26, 1, (2014) · doi:10.1063/1.4862918
[36] Lumley, J. L., Computational modeling of turbulent flows, Adv. Appl. Mech., 18, 123-176, (1979) · Zbl 0472.76052 · doi:10.1016/S0065-2156(08)70266-7
[37] Lumley, J. L.; Newman, G. R., The return to isotropy of homogeneous turbulence, J. Fluid Mech., 82, 1, 161-178, (1977) · Zbl 0368.76055 · doi:10.1017/S0022112077000585
[38] Marati, N.; Casciola, C. M.; Piva, R., Energy cascade and spatial fluxes in wall turbulence, J. Fluid Mech., 521, 191-215, (2004) · Zbl 1065.76103 · doi:10.1017/S0022112004001818
[39] Marquillie, M.; Ehrenstein, U.; Laval, J.-P., Instability of streaks in wall turbulence with adverse pressure gradient, J. Fluid Mech., 681, 205-240, (2011) · Zbl 1241.76178 · doi:10.1017/jfm.2011.193
[40] Marquillie, M.; Ehrenstein, U. W. E., On the onset of nonlinear oscillations in a separating boundary-layer flow, J. Fluid Mech., 490, 169-188, (2003) · Zbl 1063.76537 · doi:10.1017/S0022112003005287
[41] Marquillie, M.; Laval, J.-P.; Dolganov, R., Direct numerical simulation of a separated channel flow with a smooth profile, J. Turbul., 9, N1, (2008)
[42] Marusic, I.; Monty, J. P.; Hultmark, M.; Smits, A. J., On the logarithmic region in wall turbulence, J. Fluid Mech., 716, R3, (2013) · Zbl 1284.76206 · doi:10.1017/jfm.2012.511
[43] Marusic, I., Talluru, K. M. & Hutchins, N.2014Controlling the large-scale motions in a turbulent boundary layer. In Fluid-Structure-Sound Interactions and Control, pp. 17-26. Springer. doi:10.1007/978-3-642-40371-2_2
[44] Mellen, C. P., Frölich, J. & Rodi, W.2000Large eddy simulations of the flow over periodic hills. In IMACS World Congress (ed. Deville, M. & Owens, R.), EPFL.
[45] Na, Y.; Moin, P., Direct numerical simulation of a separated turbulent boundary layer, J. Fluid Mech., 374, 379-405, (1998) · Zbl 0974.76035 · doi:10.1017/S0022112098009987
[46] Na, Y.; Moin, P., The structure of wall-pressure fluctuations in turbulent boundary layers with adverse pressure gradient and separation, J. Fluid Mech., 377, 347-373, (1998) · Zbl 1083.76526 · doi:10.1017/S0022112098003218
[47] Nagib, H. M.; Chauhan, K. A., Variations of von Kármán coefficient in canonical flows, Phys. Fluids, 20, 10, 1518, (2008) · Zbl 1182.76550 · doi:10.1063/1.3006423
[48] Neumann, J.; Wengle, H., Coherent structures in controlled separated flow over sharp-edged and rounded steps, J. Turbul., 5, 22, 14, (2004) · doi:10.1088/1468-5248/5/1/022
[49] Ohlsson, J.; Schlatter, P.; Fischer, P. F.; Henningson, D. S., Direct numerical simulation of separated flow in a three-dimensional diffuser, J. Fluid Mech., 650, 307-318, (2010) · Zbl 1189.76318 · doi:10.1017/S0022112010000558
[50] Patera, A. T., A spectral element method for fluid dynamics, J. Comput. Phys., 54, 468-488, (1984) · Zbl 0535.76035 · doi:10.1016/0021-9991(84)90128-1
[51] Peller, N. & Manhart, M.2006Turbulent channel flow with periodic hill constrictions. In New Results in Numerical and Experimental Fluid Mechanics V, pp. 504-512. Springer. doi:10.1007/978-3-540-33287-9_62 · Zbl 1323.76039
[52] Pumir, A.; Xu, H.; Siggia, E. D., Small-scale anisotropy in turbulent boundary layers, J. Fluid Mech., 804, 5-23, (2016) · Zbl 1432.76113 · doi:10.1017/jfm.2016.529
[53] Rapp, Ch.; Manhart, M., Flow over periodic hills: an experimental study, Exp. Fluids, 51, 1, 247-269, (2011) · doi:10.1007/s00348-011-1045-y
[54] Robinson, S. K., Coherent motions in the turbulent boundary layer, Annu. Rev. Fluid Mech., 23, 1, 601-639, (1991) · doi:10.1146/annurev.fl.23.010191.003125
[55] Šarić, S., Jakirlić, S., Breuer, M., Jaffrézic, B., Deng, G., Chikhaoui, O., Fröhlich, J., Von Terzi, D., Manhart, M. & Peller, N.2007Evaluation of detached eddy simulations for predicting the flow over periodic hills. In ESAIM: Proceedings, vol. 16, pp. 133-145. EDP Sciences. · Zbl 1206.76034
[56] Simpson, R. L., Turbulent boundary-layer separation, Annu. Rev. Fluid Mech., 21, 205-232, (1989) · Zbl 0662.76077 · doi:10.1146/annurev.fl.21.010189.001225
[57] Skaare, P. E.; Krogstad, P. A., A turbulent equilibrium boundary layer near separation, J. Fluid Mech., 272, 319-348, (1994) · doi:10.1017/S0022112094004489
[58] Skote, M.; Henningson, D. S., Direct numerical simulation of a separated turbulent boundary layer, J. Fluid Mech., 471, 107-136, (2002) · Zbl 1026.76029 · doi:10.1017/S0022112002002173
[59] Skote, M.; Henningson, D. S.; Henkes, R. A. W. M., Direct numerical simulation of self-similar turbulent boundary layers in adverse pressure gradients, Flow Turbul. Combust., 60, 1, 47-85, (1998) · Zbl 0949.76044 · doi:10.1023/A:1009934906108
[60] Soria, J., Kitsios, V., Atkinson, C., Sillero, J. A., Borrell, G., Gungar, A. G. & Jimenez, J.2017Towards the direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer flow. In Whither Turbulence and Big Data in the 21st Century?, pp. 61-75. Springer. doi:10.1007/978-3-319-41217-7_4
[61] Spalart, P. R., Direct simulation of a turbulent boundary layer up to r𝜃 = 1410, J. Fluid Mech., 187, 61-98, (1988) · Zbl 0641.76050 · doi:10.1017/S0022112088000345
[62] Spalart, P. R.; Watmuff, J. H., Experimental and numerical investigation of a turbulent boundary layer with pressure gradients, J. Fluid Mech., 249, 337-371, (1993) · doi:10.1017/S002211209300120X
[63] Speziale, C. G., Analytical methods for the development of Reynolds-stress closures in turbulence, Annu. Rev. Fluid Mech., 23, 1, 107-157, (1991) · Zbl 0723.76005 · doi:10.1146/annurev.fl.23.010191.000543
[64] Temmerman, L.; Leschziner, M. A.; Mellen, C. P.; Fröhlich, J., Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions, Intl J. Heat Fluid Flow, 24, 2, 157-180, (2003) · doi:10.1016/S0142-727X(02)00222-9
[65] Van Dyke, M., An Album of Fluid Motion, (1982), Parabolic
[66] Webster, D. R.; Degraaff, D. B.; Eaton, J. K., Turbulence characteristics of a boundary layer over a two-dimensional bump, J. Fluid Mech., 320, 53-69, (1996) · doi:10.1017/S0022112096007458
[67] Wilcox, D. C., Turbulence Modeling for CFD, vol. 2, (1998), DCW industries La Canada, CA
[68] Wu, X.; Squires, K. D., Numerical investigation of the turbulent boundary layer over a bump, J. Fluid Mech., 362, 229-271, (1998) · Zbl 0926.76082 · doi:10.1017/S0022112098008982
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.