×

Mathematical properties of pyramid-transform-based resolution conversion and its applications. (English) Zbl 1539.68353

Summary: In this paper, we aim to clarify the statistical and geometric properties of linear resolution conversion for registration between different resolutions observed using the same modality. The pyramid transform is achieved by smoothing and downsampling. The dual operation of the pyramid transform is achieved by linear smoothing after upsampling. The rational-order pyramid transform is decomposed into upsampling for smoothing and the conventional integer-order pyramid transform. By controlling the ratio between upsampling for smoothing and downsampling in the pyramid transform, the rational-order pyramid transform is computed. The tensor expression of the multiway pyramid transform implies that the transform yields orthogonal base systems for any ratio of the rational pyramid transform. The numerical evaluation of the transform shows that the rational-order pyramid transform preserves the normalised distribution of greyscale in images.

MSC:

68U10 Computing methodologies for image processing
65F99 Numerical linear algebra
65T60 Numerical methods for wavelets
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

FAIR.m; BrainWeb
Full Text: DOI

References:

[1] Burt, PJ; Adelson, EH, The Laplacian pyramid as a compact image code, IEEE Trans. Commun., 31, 532-540, 1983 · doi:10.1109/TCOM.1983.1095851
[2] Burt, PJ; Adelson, EH, A multiresolution spline with application to image mosaics, ACM Trans. Graph., 2, 217-236, 1983 · doi:10.1145/245.247
[3] Jolion, J-M; Rosenfeld, R., An \(O(log n)\) pyramid hough transform, PRL, 9, 343-349, 1989 · Zbl 0800.68751 · doi:10.1016/0167-8655(89)90063-9
[4] MacLean, WJ; Tsotsos, JK, Fast pattern recognition using normalized grey-scale correlation in a pyramid image representation, Mach. Vis. Appl., 19, 163-179, 2008 · doi:10.1007/s00138-007-0089-8
[5] Alelaiwi, A.; Abdul, W.; Solaiman Dewan, M.; Migdadi, M.; Ghulam Muhammad, M., Steerable pyramid transform and local binary pattern based robust face recognition for e-health secured login, Comput. Electr. Eng., 53, 435-443, 2016 · doi:10.1016/j.compeleceng.2016.01.008
[6] Kounalakis, T., Boulgouris, N.V.: Classification of 2D and 3D images using pyramid scale decision voting. In: 2014 IEEE International Conference on Image Processing (ICIP2014), pp. 957-960, (2014). https//doi.org/10.1109/ICIP.2014.7025192
[7] Biswas, R.; Roy, S.; Biswas, A., MRI and CT image indexing and retrieval using steerable pyramid transform and local neighborhood difference pattern, Int. J. Comput. Appl., 44, 1005-1014, 2022 · doi:10.1080/1206212X.2022.2092937
[8] Zang, X.; Li, G.; Gao, W., Multidirection and multiscale pyramid in transformer for video-based pedestrian retrieval, IEEE Trans. Ind. Inform., 18, 8776-8785, 2022 · doi:10.1109/TII.2022.3151766
[9] Wang, X., Feng, D.: Bi-hierarchy medical image registration based on steerable pyramid transform. In: Li, K., Li, X., Irwin, G.W., He, G. (eds.) Life System Modeling and Simulation. LSMS 2007. Lecture Notes in Computer Science, vol. 4689, pp. 370-379. Springer, Berlin, Heidelberg (2007). doi:10.1007/978-3-540-74771-0_42
[10] Mok, T.C.W., Chung, A.C.S.: Large deformation diffeomorphic image registration with Laplacian pyramid networks. In: Anne, L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention? MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science, vol. 12263, pp. 211-221. Springer, Cham (2020). doi:10.1007/978-3-030-59716-0
[11] Pizlo, Z.; Stefanov, E.; Saalweachter, J.; Li, Z.; Haxhimusa, Y.; Kropatsch, WG, Traveling salesman problem: a foveating pyramid model, J. Probl. Solv., 1, 8, 2006 · doi:10.7771/1932-6246.1009
[12] Haxhimusa, Y., Kropatsch, W.G., Pizlo, Z., Ion, A., Lehrbaum, A.: Approximating TSP solution by MST based graph pyramid. In: Escolano, F., Vento, M. (eds.) Graph-Based Representations in Pattern Recognition. GbRPR2007. Lecture Notes in Computer Science, vol. 4538, pp. 295-306. Springer, Berlin Heidelberg (2007). doi:10.1007/978-3-540-72903-7_27 · Zbl 1182.68196
[13] Haxhimusa, Y.; Carpenter, E.; Catrambone, J.; Foldes, D.; Stefanov, E.; Arns, L.; Pizlo, Z., 2D and 3D traveling salesman problem, J Probl Solv, 3, 8, 2011 · doi:10.7771/1932-6246.1096
[14] Haddad, RA; Akansu, AN, A class of fast Gaussian binomial filters for speech and image processing, IEEE Trans Sign Process, 39, 723-727, 1991 · doi:10.1109/78.80892
[15] Young, IT; van Vliet, LJ, Recursive implementation of the Gaussian filter, Sign. Process., 44, 139-151, 1995 · doi:10.1016/0165-1684(95)00020-E
[16] Lindeberg, T., Scale-space for discrete signals. PAMI, 12, 234-254, 1990 · doi:10.1109/34.49051
[17] Lindeberg, T., Discrete derivative approximations with scale-space properties: a basis for low-Level feature extraction, J. Math. Imag. Vis., 3, 349-376, 1993 · doi:10.1007/BF01664794
[18] Villani, C.: Optimal Transport: Old and New. Springer, Berlin (2009). doi:10.1007/978-3-540-71050-9 · Zbl 1156.53003
[19] Cha, S-H; Srihari, SN, On measuring the distance between histograms, Patt. Recogn., 35, 1355-1370, 2002 · Zbl 0997.68123 · doi:10.1016/S0031-3203(01)00118-2
[20] Kamarainen, J-K; Kyrki, V.; Ilonen, J.; Kaelviäinen, H., Improving similarity measures of histograms using smoothing projections, PRL, 24, 2009-2019, 2003 · doi:10.1016/S0167-8655(03)00039-4
[21] Arevalillo-Herraez, M.; Domingo, J.; Ferri, FJ, Combining similarity measures in content-based image retrieval, PRL, 29, 2174-2181, 2008 · doi:10.1016/j.patrec.2008.08.003
[22] Gangbo, W.; McCann, RJ, The geometry of optimal transportation, Acta Math., 177, 113-161, 1996 · Zbl 0887.49017 · doi:10.1007/BF02392620
[23] Kaijser, T., Computing the Kantorovich distance for images, JMIV, 9, 173-191, 1998 · Zbl 0911.68207 · doi:10.1023/A:100838972691
[24] Haker, S.; Zhu, L.; Tannenbaum, A.; Angenent, S., Optimal mass transport for registration and warping, IJCV, 60, 225-240, 2004 · Zbl 1477.68510 · doi:10.1023/B:VISI.0000036836.66311.97
[25] Fischer, B.; Modersitzki, J., Ill-posed medicine- an introduction to image registration, Inverse Prob., 24, 1-17, 2008 · Zbl 1138.92347 · doi:10.1088/0266-5611/24/3/034008
[26] Modersitzki, J., Numerical Methods for Image Registration, Oxford University Press, 2003 · doi:10.1093/acprof:oso/9780198528418.001.0001
[27] Nguyen, H.T., Nguyen L.-T.: The Laplacian pyramid with rational scaling factors and application on image denoising. In: Proceedings of 10th International Conference on Information Science, Signal Processing and Their Applications (ISSPA 2010) 10th ISSPA, pp. 468-471 (2010). doi:10.1109/ISSPA.2010.5605441
[28] Thévenaz, P.; Unser, M., Optimization of mutual information for multiresolution image registration, IEEE Trans. Image Process., 9, 2083-2099, 2000 · Zbl 0993.94534 · doi:10.1109/83.887976
[29] Ohnishi, N.; Kameda, Y.; Imiya, A.; Dorst, L.; Klette, R.; Sommer, G.; Klette, R., Dynamic multiresolution optical flow computation, Robot Vision, RobVis 2008, 1-15, 2008, Berlin Heidelberg: Springer, Berlin Heidelberg
[30] Kropatsch, WG, A pyramid that grows by powers of 2, PRL, 3, 315-322, 1985 · doi:10.1016/0167-8655(85)90062-5
[31] Meer, P.; Jiang, S-N; Baugher, ES; Rosenfeld, A., Robustness of image pyramids under structural perturbations, CVGIP, 44, 307-331, 1988 · doi:10.1016/0734-189X(88)90127-2
[32] Meer, P., Stochastic image pyramids. CVGIP, 45, 269-294, 1989 · doi:10.1016/0734-189X(89)90084-4
[33] Mayer, H., Kropatsch, W.G.: Progressive Bildubertragung mit der \(3\times 3/2\) Pyramide. In: Burkhardt, H. Höhne, K.-H., Neumann, B. (eds.) Informatik-Fachberichte, 219, DAGM-Symposium 1989, pp. 160-167 (1989). doi:10.1007/978-3-642-75102-8
[34] Modersitzki, J., FAIR: Flexible Algorithms for Image Registration, 2019, Fundamentals of Algorithms): SIAM, Fundamentals of Algorithms)
[35] Henn, S.; Witsch, K., Multimodal image registration using a variational approach, SIAM J. Sci. Comput., 25, 1429-1447, 2004 · Zbl 1061.65052 · doi:10.1137/S1064827502201424
[36] Maes, F.; Collignon, A.; Vandermeulen, D.; Marchal, G.; Suetens, P., Multimodality image registration by maximization of mutual information, IEEE TMI, 16, 187-198, 1997 · doi:10.1109/42.563664
[37] Modersitzki,J., Haber, E.: Cofir: Coarse and Fine Image Registration. In: Lorenz T., Biegler, L.T. Ghattas, O., Heinkenschloss, M., Keyes, D., Bloemen Waanders, B. (eds) Real-Time PDE-Constrained Optimization, SIAM, pp. 277-288 (2007). doi:10.1137/1.9780898718935 · Zbl 1261.94013
[38] Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi-modal images. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) Medical Image Computing and Computer-Assisted Intervention, MICCAI 2006. MICCAI 2006. LNCS, vol. 4191, pp. 726-733. Springer, Berlin, Heidelberg (2006). doi:10.1007/11866763_89
[39] Fletcher, P.; Lu, C.; Pizer, SM; Joshi, S., Principal geodesic analysis f or the study of nonlinear statistics of shape, IEEE TMI, 23, 995-1005, 2004 · doi:10.1109/TMI.2004.831793
[40] Hermosillo, G.; Chefd’Hotel, C.; Faugeras, O., Variational methods for multimodal image matching, IJCV, 50, 329-343, 2002 · Zbl 1012.68788 · doi:10.1023/A:1020830525823
[41] Hermosillo, G.; Faugeras, O., Well-posedness of two nonridged multimodal image registration methods, SIAM J. Appl. Math., 64, 1550-1587, 2002 · Zbl 1053.94004 · doi:10.1137/S0036139903424904
[42] Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N.: Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In: Yang, G.Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) Medical Image Computing and Computer-Assisted Intervention -MICCAI 2009, MICCAI 2009. LNCS, vol. 5761, pp. 297-304. Springer, Berlin, Heidelberg (2009). doi:10.1007/978-3-642-04268-3_37
[43] Feng, J.; Ma, L.; Bi, F.; Zhang, X.; Chen, H., A coarse-to-fine image registration method based on visual attention model, Sci. China Inf. Sci., 57, 1-10, 2014 · doi:10.1007/s11432-014-5207-4
[44] Huai, Y.; Yang, W.; Liu, Y., Coarse-to-fine accurate registration for airborne SAR images using SAR-Fast and DSP-LATCH, Progr. Electromagn. Res., 163, 89-106, 2018 · doi:10.2528/PIER18070801
[45] Shepp, LA; Kruskal, J., Computerized tomography: the new medical X-ray technology, Am. Math. Month., 85, 420-439, 1978 · Zbl 0381.68079 · doi:10.1080/00029890.1978.11994611
[46] Rumpf, M.; Wirth, B., A nonlinear elastic shape averaging approach, SIAM J. Imag. Sci., 2, 800-833, 2009 · Zbl 1219.49035 · doi:10.1137/080738337
[47] Inagaki, S., Itoh, H., Imiya, A.: Multiple alignment of spatiotemporal deformable objects f or the average-organ computation. In: Agapito, L., Bronstein, M., Rother, C. (eds.) Computer Vision: ECCV 2014 Workshops, ECCV 2014. LNCS, vol. 8928, pp. 336-356. Springer, Cham (2014). doi:10.1007/978-3-319-16220-1_25
[48] Brudfors, M., Balbastre, Y., Ashburner, J.: Groupwise multimodal image registration using joint total variation. In: Papie, B., Namburete, A., Yaqub, M., Noble, J. (eds.) Medical Image Understanding and Analysis. MIUA 2020. Communications in Computer and Information Science, vol. 1248, pp. 184-194. Springer, Cham (2020). doi:10.1007/978-3-030-52791-4_15
[49] Kirsch, A., An Introduction to the Mathematical Theory of Inverse Problems, Springer, 2011 · Zbl 1213.35004 · doi:10.1007/978-1-4419-8474-6
[50] Stark, H. (ed.): Image Recovery: Theory and Application. Elsevier (2013)
[51] van Ouwerkerk, JD, Image super-resolution survey, Image Vis. Comput., 24, 1039-1052, 2006 · doi:10.1016/j.imavis.2006.02.026
[52] Morera-Delfín, L., Pinto-Elías, R., Ochoa-Domínguez, Hd.J.: Overview of super-resolution techniques. In: Vergara Villegas, O., Nandayapa, M., Soto, I. (eds.) Advanced Topics on Computer Vision, Control and Robotics in Mechatronics. Springer, Cham (2018). doi:10.1007/978-3-319-77770-2_5
[53] Campbell, S.L., Meyer, C.D.: Generalized Inverses of Linear Transformations. (CL56 in the SIAM series CLASSICS in Applied Mathematics) SIAM, (2009) The original edition was published by Pitman Publishing Limited, London, 1979, in the series Surveys and Reference Works in Mathematics, and was reprinted by Dover Publications in 1991. doi:10.1137/1.9780898719048
[54] Collatz, R.: Numerische Behandlung von Differentialgleichungen. Springer, Berlin, Heidelberg (1951). doi:10.1007/978-3-662-05500-7 . (English TranslationThe Numerical Treatment of Differential Equations (1966)) · Zbl 0044.33103
[55] Lanczos, C.: Applied Analysis. Prentice Hall (1956) · Zbl 0074.10502
[56] Lasota, A., A discrete boundary value problem, Ann. Polon. Math., 20, 84-190, 1968 · Zbl 0157.15602 · doi:10.4064/AP-20-2-183-190Corpus
[57] Hansen, PCh, Discrete Inverse Problems: Insight and Algorithms, SIAM, 2019 · Zbl 1197.65054 · doi:10.1137/1.9780898718836
[58] Quarteroni,A., Sacco, R., Saleri, F.: Numerische Mathematik, Vols. 1 and 2, Springer, (2002) doi:10.1007/b98885 · Zbl 0979.65001
[59] Grossmann, Ch; Ross, H-G, Numerik partieller Differntialgeleichungen, 1994, Stuttgart: B. G. Teubner, Stuttgart · Zbl 0822.65055 · doi:10.1007/978-3-322-96752-7
[60] Hackbusch, W.: Multi-Grid Methods and Applications, (Springer Series in Computational Mathematics, 4), (1985) doi:10.1007/978-3-662-02427-0 · Zbl 0595.65106
[61] Bredies, K., Lorenz, D.: Mathematische Bildverarbeitung, Einfuhrung in Grundlagen und moderne Theorie. B. G. Teubner, Stuttgart (2014). doi:10.1007/978-3-8348-9814-2
[62] Scherzer, O.: Handbook of Mathematical Methods in Imaging, 1st edn. Springer (2011). doi:10.1007/978-0-387-92920-0 · Zbl 1259.00006
[63] Louis, A.K.: Inverse und Schlecht Gestellte Probleme. B. G. Teubner, Stuttgart (1989). doi:10.1007/978-3-322-84808 · Zbl 0667.65045
[64] Chambolle, A., An algorithm for total variation minimization and applications, J. Math. Imag. Vis., 20, 89-97, 2004 · Zbl 1366.94048 · doi:10.1023/B:JMIV.0000011325.36760.1e
[65] Kroonenberg, PM, Applied Multiway Data Analysis. Wiley, 2008 · Zbl 1160.62002 · doi:10.1002/9780470238004
[66] Cichocki, A.; Zdunek, R.; Phan, AH; Amari, S-I, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation, Wiley, 2009 · doi:10.1002/9780470747278
[67] Ballester-Ripoll, R.; Steiner, D.; Pajarola, R., Multiresolution volume filtering in the tensor compressed domain, IEEE TVCG, 24, 2714-2727, 2018 · doi:10.1109/TVCG.2017.2771282
[68] Ballester-Ripoll, R.; Paredes, EG; Pajarola, R., Sobol tensor trains for global sensitivity analysis, Reliab. Eng. Syst. Saf., 183, 311-322, 2019 · doi:10.1016/j.ress.2018.11.007
[69] Oppenheim, AV; Schafer, RW, Digital Signal Processing, 1975, Hoboken: Prentice Hall, Hoboken · Zbl 0369.94002
[70] Bracewell, RN, Two-Dimensional Imaging, 1995, Hoboken: Prentice-Hall Signal Processing Series. Prentice Hall, Hoboken · Zbl 0867.68113
[71] Bracewell, RN, Fourier Transform and its Applications, 1978, New York: McGraw-Hill, New York · Zbl 0502.42001
[72] Lindeberg, T.: Scale-Space Theory in Computer Vision. Springer Edition in The Springer International Series in Engineering and Computer Science, Kluwer Academic Publishers (1994). doi:10.1007/978-1-4757-6465-9
[73] Jolion, J.-M., Rosenfeld, A.: A Pyramid Framework for Early Vision: Multiresolutional Computer Vision. The Springer International Series in Engineering and Computer Science, Springer, New York (1994). doi:10.1007/978-1-4615-2792-3
[74] Montanvert, A., Meer, P., Bertolino, P.: Hierarchical shape analysis in grey-level images. In: Toet, A., Foster, D., Heijmans, H.J.M., Meer, P. (eds.) Shape in Picture, NATO ASI F, vol. 126, pp. 511-524. Springer, Berlin, Heidelberg (1994). doi:10.1007/978-3-662-03039-4
[75] Kropatsch, W.G., Willersinn, D.: Irregular curve pyramids, pp. 525-537
[76] Alejandro, D.; Amaro, V.; Bhalerao, A., Hierarchical contour shape analysis. Comput. Sistemas, 19, 233-242, 2015
[77] Tschirsich, M.; Kuijper, K., Notes on discrete gaussian scale space, JMIV, 51, 106-123, 2015 · Zbl 1332.94017 · doi:10.1007/s10851-014-0509-0
[78] Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bull. Electrotech. Lab. 26, 368-388 (1962). ((in Japanese))
[79] Lindeberg, T.: Generalized axiomatic scale-space theory. In: Hawkes, W. (Eds) Advances in Imaging and Electron Physics, pp. 1-96 (2013). doi:10.1016/B978-0-12-407701-0.00001-7
[80] Lindeberg, T., Bretzner, L.: Real-time scale selection in hybrid multi-scale representations. In: Griffin, L.D., Lillholm, M. (eds) Proc. Scale-Space’03, LNCS, vol. 2695, (complete version Technical report ISRN KTH/NA/P-03/07-SE, June 2003), pp. 148-163 (2003) · Zbl 1067.68753
[81] Crowley, JL; Parker, AC, A representation for shape based on peaks and ridges in the difference of low-pass transform, IEEE PAMI, 6, 156-170, 1984 · doi:10.1109/TPAMI.1984.4767500
[82] Crowley, JL; Sanderson, AC, Multiple resolution representation and probabilistic matching of 2-D gray-scale shape, IEEE PAMI, 9, 113-121, 1987 · doi:10.1109/TPAMI.1987.4767876
[83] Crowley, JL; Stern, RM, Fast computation of the difference of low-pass transform, IEEE PAMI, 6, 212-222, 1984 · Zbl 0529.68064 · doi:10.1109/TPAMI.1984.4767504
[84] Sakai, T.; Imiya, A., Gradient structure of image in scale space, JMIV, 28, 243-257, 2007 · Zbl 1523.68160 · doi:10.1007/s10851-007-0005-x
[85] Sakai, T., Imiya, A.: Validation of watershed regions by scale-space statistics. In: Tai, X.-C., Moerken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 175-186. Springer, Berlin, Heidelberg (2009). doi:10.1007/978-3-642-02256-2_15
[86] Sakai, T., Narita, Mr ., Komazaki, T., Nishiguchi, H. Imiya, A.: Image hierarchy in Gaussian scale space. In: Hawkes, P.W. (Eds.) Advances in Imaging and Electron Physics, vol. 165, pp. 175-263 (2011) doi:10.1016/B978-0-12-385861-0.00005-1
[87] Van De Ville, D., Unser, M.: The Marr wavelet pyramid and multiscale directional image analysis. In: 2008 16th European Signal Processing Conference, pp. 1-5 (2008). https://ieeexplore.ieee.org/xpl/conhome/7080219/proceeding
[88] Sabre, R., Sri, I., Wahyuni, I.S.: Wavelet decomposition in Laplacian pyramid for image fusion. Int. J. Sign. Process. Syst. 4, 37-44 (2016). doi:10.12720/ijsps.4.1.37-44
[89] Marfil, R.; Antunez, E.; Bandera, A., Hierarchical segmentation of range images inside the combinatorial pyramid, Neurocomputing, 161, 81-88, 2015 · doi:10.1016/j.neucom.2015.01.075
[90] Cerman, M.; Janusch, I.; González-Díaz, R.; Kropatsch, WG, Topology-based image segmentation using LBP pyramids, Mach. Vis. Appl., 27, 1161-1174, 2016 · doi:10.1007/s00138-016-0795-1
[91] Jing, H.; Xi, W.; Jiliu, Z., Noise robust single image super-resolution using a multiscale image pyramid, Sign. Process., 148, 157-171, 2018 · doi:10.1016/j.sigpro.2018.02.020
[92] Wang, Z.; Cui, Z.; Zhu, Y., Multi-modal medical image fusion by Laplacian pyramid and adaptive sparse representation, Comput. Biol. Med., 123, 2020 · doi:10.1016/j.compbiomed.2020.103823
[93] Shuman, DI; Faraji, MJ; Vandergheynst, P., A multiscale pyramid transform for graph signals, IEEE TSP, 64, 2119-2134, 2016 · Zbl 1414.94566 · doi:10.1109/TSP.2015.2512529
[94] Brun, L.; Kropatsch, WG, Contains and inside relationships within combinatorial pyramids, Patt. Recogn., 39, 515-526, 2006 · Zbl 1122.68521 · doi:10.1016/j.patcog.2005.10.015
[95] Mochizuki, Y.; Imiya, A.; Sakai, T.; Imaizumi, T., Variational method for super-resolution optical flow, Sign. Process., 91, 1535-1567, 2011 · Zbl 1213.94042 · doi:10.1016/j.sigpro.2010.11.010
[96] Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: International Conference on Learning Representations (ICLR2016) (2016), CoRR abs/1511.07122. (2015) arxiv:1511.07122
[97] Hu, K., Fang, Y.: 3D Laplacian pyramid signature. In: Jawahar, C., Shan, S. (eds.) Computer Vision?: ACCV 2014 Workshops. ACCV 2014. LNCS, vol. 9010. Springer, Cham (2015)
[98] Trottenberg, U., Oosterlee, C.W., Schulle, A.: Multigrid. Academic Press (2001) · Zbl 0976.65106
[99] Strang, G., Computational Science and Engineering, 2007, Wellesley: Wellesley-Cambridge Press, Wellesley · Zbl 1194.65001
[100] Papadakis, N.; Rabin, J., Convex histogram-based joint image segmentation with regularized optimal transport cost, JMIV, 59, 161-186, 2017 · Zbl 1391.94094 · doi:10.1007/s10851-017-0725-5
[101] Bazan, E., Dokladal, P., Dokladalova, E.: Quantitative analysis of similarity measures of distributions. In: British Machine Vision Conference 2019, BMVC 2019, Cardiff (209). https://core.ac.uk/download/pdf/231938789.pdf
[102] Itoh, H., Imiya, A., Sakai, T.: Discriminative properties in directional distributions for image pattern recognition. In: Braunl, T., McCane, B., Rivera, M., Yu, X. (eds.) Image and Video Technology. PSIVT 2015. LNCS, vol. 9431, pp. 617-630. Springer, Cham (2015). doi:10.1007/978-3-319-29451-3_49
[103] Cabrelli, CA; Molter, UM, The Kantorovich metric for probability measures on the circle, J. Comput. Appl. Math., 57, 345-361, 1995 · Zbl 0819.60001 · doi:10.1016/0377-0427(93)E0213-6
[104] Cabrelli, CA; Molter, UM, A linear time algorithm for a matching problem on the circle, IPL, 66, 161-164, 1998 · Zbl 0925.68197 · doi:10.1016/S0020-0190(98)00048-9
[105] Delon, J.; Salomon, J.; Sobolevski, A., Fast transport optimization for Monge costs on the circle, SIAM. J. Appl. Math., 70, 2239-2258, 2010 · Zbl 1229.90088 · doi:10.1137/090772708
[106] Rabin, J.; Delon, J.; Gousseau, Y., Transportation distances on the circle. JMIV, 41, 147-167, 2011 · Zbl 1255.68179 · doi:10.1007/s10851-011-0284-0
[107] Solomon, J: Optimal transport on discrete domains. arXiv, (2018) (2018 AMS Short Course on Discrete Differential Geometry http://geometry.cs.cmu.edu/ddgshortcourse/) https://arxiv.org/abs/1801.07745
[108] Bogachev, VI; Kolesnikov, AV, The Monge-Kantorovich problem: achievements, connections, and perspectives, Russ. Math. Surv., 67, 785-890, 2012 · Zbl 1276.28029 · doi:10.1070/RM2012v067n05ABEH004808
[109] Ledoux, M., Sobolev-Kantorovich inequalities. Anal. Geom. Metr. Spaces, 3, 157-166, 2015 · Zbl 1326.35171 · doi:10.1515/agms-2015-0011
[110] Bigot, J.: Statistical data analysis in the Wasserstein space. ESAIM: Process and Surv. 68, 1-19 (2020). doi:10.1051/proc/202068001 · Zbl 1444.62171
[111] Olkin, I.; Pukelsheim, F., The distance between two random vectors with given dispersion matrices, Linear Algebra Appl., 48, 257-263, 1982 · Zbl 0527.60015 · doi:10.1016/0024-3795(82)90112-4
[112] Rüschendorf, L.; Rachev, ST, A characterization of random variables with minimum \(L_2\)-distance, J. Multivar. Anal., 32, 48-54, 1992 · Zbl 0688.62034 · doi:10.1016/0047-259X(90)90070-X
[113] Haasler, I., Frossard, P., Bures-Wasserstein means of graphs, arXiv:2305.19738v1, 2023
[114] Bigot, J.; Guet, R.; Klein, T.; Lopéz, A., Geodesic PCA in the Wasserstein space by convex PCA Ann, Inst. H. Poincare Probab. Statist., 53, 1-26, 2017 · Zbl 1362.62065 · doi:10.1214/15-AIHP706
[115] Campbell, J., The SMM model as a boundary value problem using the discrete diffusion equation, Theor. Popul. Biol., 72, 539-546, 2007 · Zbl 1141.92029 · doi:10.1016/j.tpb.2007.08.001
[116] Hanke, M. Nagy, J., Plemmons, R.: Preconditioned iterative regularization for ill-posed problems. In: Arden Ruttan, A., Varga, R.S. (eds) Numerical Linear Algebra: Proceedings of the Conference in Numerical Linear Algebra and Scientific Computation, In the series De Gruyter Proceedings in Mathematics (1993). doi:10.1515/9783110857658.141, doi:10.1515/9783110857658 · Zbl 0794.65039
[117] Ng, K.; Chan, RH; Tang, W-C, A fast algorithm for deblurring models with Neumann boundary conditions, SIAM J. Sci. Comput., 21, 851-866, 2000 · Zbl 0951.65038 · doi:10.1137/S1064827598341384
[118] Perrone, L., Kronecker product approximations for image restoration with anti-reflective boundary conditions, Numer. Linear Algebra Appl., 13, 1-22, 2006 · Zbl 1174.94309 · doi:10.1002/nla.458
[119] Donatelli, M., Fast transforms for high order boundary conditions in deconvolution problems, BIT Numer. Math., 50, 559-576, 2010 · Zbl 1204.65151 · doi:10.1007/s10543-010-0266-4
[120] Donatelli, M.; Reichel, L., Square smoothing regularization matrices with accurate boundary conditions, J. Comput. Appl. Math., 272, 334-349, 2014 · Zbl 1294.65099 · doi:10.1016/j.cam.2013.08.015Donatelli2014
[121] Yosida, K.: Functional Analysis. Springer, Berlin, Heidelberg (1965). doi:10.1007/978-3-642-61859-8 · Zbl 0126.11504
[122] Kolmogorov, A.N., Fomin, S.V.: Elements of the theory of functions and functional analysis, Vols. 1 and 2, Nauka, Moscow, (1957) (English translation: Graylock Press, Rochester, New York, (1957), Reprint of English edition: Dover Publications (1999))
[123] Luenberger, DG, Optimization by Vector Space Methods, 1969, New York: Wiley, New York · Zbl 0176.12701
[124] Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, John Wiley and Sons, New York, (1974) (Generalized Inverses: Theory and Applications. 2nd ed., Springer, (2003) · Zbl 0305.15001
[125] Rao, CR; Mitra, SK, Generalized Inverse of Matrices and Its Applications, 1972, New York: Wiley, New York
[126] Strang, G., Nguyen, T.: Wavelets and Filter Banks, 2nd edn. Wellesley-Cambridge Press (1996) · Zbl 1254.94002
[127] Demmel, JW, Applied numerical linear algebra. SIAM, 1997 · Zbl 0879.65017 · doi:10.1137/1.9781611971446
[128] Lindeberg, T., Scale-space for discrete signals. PAMI, 12, 234-254, 1990 · doi:10.1109/34.49051
[129] Institut fur Algorithmen und Kognitive Systeme, KTH, (Group Prof. Dr. H.-H. Nagel) Image Sequence Server http://i21www.ira.uka.de/image_sequences/#dt
[130] Geisler, WS; Perry, JS, Statistics for optimal point prediction in natural images, J. Vis., 11, 12, 14, 2011 · doi:10.1167/11.12.14
[131] A microCT scan of dried hazelnuts with leaves. Department of Informatics Visualization and Multimedia Lab, University of Zurich, Research Datasets, https://www.ifi.uzh.ch/en/vmml/research/datasets.html
[132] Cocosco, CA; Kollokian, V.; Kwan, RK-S; Evans, AC, BrainWeb: online Interface to a 3D MRI simulated brain database, NeuroImage, 5, 4, S425, 1997
[133] Computational Anatomy for Computer-Aided Diagnosis and Therapy: Frontiers of Medical Image Sciences, (2009-2013) 21103001 https://kaken.nii.ac.jp/grant/KAKENHI-ORGANIZER-21103001/ by Grant-in-Aid for Scientific Research on Innovative Areas, MEXT (Ministry of Education, Culture, Sports, Science and Technology), Japan. (2009-2013) 21103001
[134] Multidisciplinary Computational Anatomy and Its Application to Highly Intelligent Diagnosis and Therapy (2014-2018) 26108001 Grant-in-Aid for Scientific Research on Innovative Areas, MEXT(Ministry of Education, Culture, Sports, Science and Technology), Japan http://wiki.tagen-compana.org/mediawiki/index.php/Main_Pagehttps://kaken.nii.ac.jp/grant/KAKENHI-ORGANIZER-26108001/
[135] The Lenna Story - www.lenna.org:Imaging Experts Meet Lenna in Person. (2001) http://www.lenna.org/
[136] Mori, K., Oda, M.: Micro-CT volumetric image database creation for multi-scale image processing algorithm development—Database creation for algorithm development in multi-disciplinary computational anatomy. IEICE Technical Report, MI2015-108, vol. 105(401), pp. 165-170 (2016)
[137] Dikbas, S.; Altunbasak, Y., Novel true-motion estimation algorithm and its application to motion-compensated temporal frame interpolation, IEEE TIP, 22, 2931-2945, 2012 · Zbl 1373.94568 · doi:10.1109/TIP.2012.2222893
[138] Zhang, L.; Wu, X., An edge-guided image interpolation algorithm via directional filtering and data fusion, IEEE TIP, 15, 2226-2238, 2006 · doi:10.1109/tip.2006.877407
[139] Otsu, N., A threshold selection method from gray-level histograms, IEEE SMC, 9, 62-66, 1979 · doi:10.1109/TSMC.1979.4310076
[140] Najman, L.; Schmitt, M., Watershed of a continuous function, Sign. Process., 38, 99-112, 1994 · doi:10.1016/0165-1684(94)90059-0
[141] Wright, A.S., Acton, S.T.: Watershed pyramids for edge detection. In: Proceedings of 1997, International Conference on Image Processing, ICIP1997, Vol. 2, pp. 578-581 (1997). doi:10.1109/ICIP.1997.638837
[142] Meer, P.; Baugher, ES; Rosenfeld, A., Frequency domain analysis and synthesis of image pyramid generating kernels, PAMI, 19, 512-522, 1987 · doi:10.1109/TPAMI.1987.4767939
[143] Chin, F.; Choi, A.; Luo, Y., Optimal generating kernels for image pyramids by piecewise fitting, PAMI, 14, 1190-1198, 1992 · doi:10.1109/34.177384
[144] Thévenaz, P., Blu, T., Unser, M.: Image interpolation and resampling. In: Bankman, I. N. Ed.: Handbook of Medical Imaging, pp. 393-420, Elsevier (2000) doi:10.1016/B978-012077790-7/50030-8. http://bigwww.epfl.ch/publications/thevenaz9901.pdf
[145] Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill Book Company (1966) · Zbl 0161.25202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.