×

Hybrid almost output regulation of linear impulsive systems with average dwell-time. (English) Zbl 1336.93067

Summary: This paper deals with the hybrid almost output regulation problem for a class of linear systems with average dwell-time impulses. The proposed hybrid output regulator is constructed as a linear impulsive system that undergoes synchronous impulses with the controlled plant. Lyapunov-based sufficient conditions of the output regulability and weighted \(\mathcal{L}_2\) performance for the linear impulsive systems are first derived. Based on the analysis results, the hybrid synthesis problem is formulated in terms of linear matrix equations plus a set of Linear Matrix Inequalities (LMIs). With this hybrid synthesis scheme, both flow and jump dynamics of the hybrid regulator can be jointly designed by solving a convex optimization problem in minimizing the weighted \(\mathcal{L}_2\) gain from the perturbation signal to the error output. A numerical example is used to demonstrate the proposed approach.

MSC:

93B50 Synthesis problems
49M30 Other numerical methods in calculus of variations (MSC2010)
90C25 Convex programming
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] Francis, B. A., The linear multivariable regulator problem, SIAM J. Control Optim., 15, 3, 486-505 (1977) · Zbl 0382.93025
[2] Saberi, A.; Stoorvogel, A. A.; Sannuti, P., Control of Linear System with Regulation and Input Constraints (1999), Springer: Springer Berlin · Zbl 0977.93001
[3] Isidori, A.; Byrnes, C. I., Output regulation of nonlinear systems, IEEE Trans. Automat. Control, 35, 2, 131-140 (1990) · Zbl 0704.93034
[4] Dong, K.; Wu, F., Almost output regulation for parameter-dependent LFT systems, IET Proc. Control Theory Appl., 2, 3, 200-209 (2008)
[5] Marconi, L.; Teel, A. R., Internal model principle for linear systems with periodic state jumps, IEEE Trans. Automat. Control, 58, 11, 2788-2802 (2013) · Zbl 1369.93238
[6] Saberi, A.; Stoorvogel, A. A.; Sannuti, P.; Shi, G., On optimal output regulation for linear systems, Internat. J. Control, 76, 4, 319-333 (2003) · Zbl 1048.93042
[7] Lin, Z.; Stoorvogel, A. A.; Saberi, A., Output regulation for linear systems subject to input saturation, Automatica, 32, 1, 29-47 (1996) · Zbl 0847.93024
[8] Koroglu, H.; Scherer, C. W., An LMI approach to \(H_\infty\) synthesis subject to almost asymptotic regulation constraints, Syst. Control Lett., 57, 300-308 (2008) · Zbl 1134.93020
[9] Koroglu, H.; Scherer, C. W., Generalized asymptotic regulation with guaranteed \(H_2\) performance: An LMI solution, Automatica, 45, 823-829 (2009) · Zbl 1168.93342
[10] Isidori, A.; Marconi, L.; Serrani, A., Autonomous vertical landing on an oscillating platform: an internal-model based approach, Automatica, 38, 1, 21-32 (2001) · Zbl 0991.93535
[11] Isidori, A.; Marconi, L.; Serrani, A., Robust nonlinear motion control of a helicopter, IEEE Trans. Automat. Control, 48, 3, 413-426 (2003) · Zbl 1364.93535
[12] Yang, W.; Tomizuka, M., Disturbance rejection through an external model for nonminimum phase systems, ASME J. Dyn. Syst. Meas. Control, 116, 1, 39-44 (1994) · Zbl 0800.93795
[13] Medvedev, A.; Hillerstrom, G., An external model control system, Control Theory Adv. Technol., 10, 1643-1665 (1995)
[14] Huang, J.; Rugh, W. J., On a nonlinear multivariable servomechanism problem, Automatica, 26, 963-972 (1990) · Zbl 0717.93019
[15] Sureshbabu, N.; Rugh, W. J., Output regulation with derivative information, IEEE Trans. Automat. Control, 40, 10, 1755-1766 (1995) · Zbl 0843.93028
[17] Gazi, V., Output regulation of a class of linear systems with switched exosystems, Internat. J. Control, 80, 10, 1665-1675 (2007) · Zbl 1194.93167
[18] Cox, N.; Marconi, L.; Teel, A. R., High-gain observers and linear output regulation for hybrid exosystems, Internat. J. Robust Nonlinear Control, 24, 6, 1043-1063 (2014) · Zbl 1291.93051
[20] Haddad, W. M.; Chellaboina, V. S.; Nersesov, S. G., Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control (2006), Princeton University Press · Zbl 1114.34001
[21] Hespanha, J. P.; Liberzon, D.; Teel, A. R., Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 44, 2735-2744 (2008) · Zbl 1152.93050
[22] Goebel, R.; Sanfelice, R.; Teel, A. R., Hybrid Dynamical Systems: Modeling, Stability, and Robustness (2012), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 1241.93002
[23] Bainov, D. D.; Simeonov, P. S., Systems with Impulse Effects: Stability, Theory and Applications (1989), Academic Press: Academic Press New York · Zbl 0676.34035
[24] Tao, Y., (Impulsive Control Theory. Impulsive Control Theory, Lecture Notes in Control and Information Sciences, vol. 272 (2001), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0996.93003
[30] Zhai, G.; Hu, B.; Yasuda, K.; Michel, A. N., Disturbance attenuation properties of time-controlled switched systems, J. Franklin Inst., 338, 765-779 (2001) · Zbl 1022.93017
[31] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory (2004), SIAM: SIAM Philadelphia, PA
[32] Yuan, C.; Wu, F., Analysis and synthesis of linear hybrid systems with state-triggered jumps, Nonlinear Anal. Hybrid Syst., 14, 47-60 (2014) · Zbl 1292.93063
[33] Zhou, K.; Doyle, J. C.; Glover, K., Robust and Optimal Control (1996), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0999.49500
[34] Francis, B. A.; Wonham, W. M., The internal model principle of control theory, Automatica, 12, 457-465 (1976) · Zbl 0344.93028
[35] Scherer, C.; Gahinet, P.; Chilali, M., Multiobjective output-feedback control via LMI optimization, IEEE Trans. Automat. Control, 42, 7, 896-911 (1997) · Zbl 0883.93024
[37] Yuan, C.; Wu, F., Hybrid control for switched linear systems with average dwell time, IEEE Trans. Automat. Control, 60, 1, 240-245 (2015) · Zbl 1360.93339
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.