×

Multi-step-ahead prediction interval for locally stationary time series with application to air pollutant concentration data. (English) Zbl 07853551

Summary: Locally stationary time series frequently appears in both finance and environmental sciences (e.g., daily air pollutant concentration or financial returns). However, constructing the multi-step-ahead prediction interval for such time series remains an open question. Hence, we extend the nonparametric regression model with autoregressive errors for equally spaced designs to the time series setup. We propose a B-spline estimator for the trend function and a kernel estimator for the variance function to implement the model. The prediction interval of multi-step-ahead future observations is also constructed after fitting the autoregressive model of errors and obtaining the quantile of prediction residuals. The proposed method is illustrated by various simulation studies and an example of air pollutant data, containing 8 years of daily air pollutant concentrations in Xi’an. Our results demonstrate that our method outperforms others owing to its higher prediction accuracy and versatility.
{© 2021 John Wiley & Sons, Ltd.}

MSC:

62-XX Statistics
Full Text: DOI

References:

[1] Aneiros‐Pérez, G., Cao, R., & Vilar‐Fernández, J. M. (2011). Functional methods for time series prediction: A nonparametric approach. Journal of Forecasting, 30(4), 377-392. · Zbl 1217.91138
[2] Brockwell, P., & Davis, R. (1991). Time series: Theory and methods. (2nd ed.). New York: Springer. · Zbl 0709.62080
[3] Cai, L., Liu, R., Wang, S., & Yang, L. (2019). Simultaneous confidence bands for mean and variance functions based on deterministic design. Statistica Sinica, 29(1), 505-525. · Zbl 1412.62213
[4] Cao, G., Wang, L., Li, Y., & Yang, L. (2016). Oracle‐efficient confidence envelopes for covariance functions in dense functional data. Statistica Sinica, 26(1), 359-383. · Zbl 1419.62071
[5] Cao, G., Yang, L., & Todem, D. (2012). Simultaneous inference for the mean function based on dense functional data. Journal of Nonparametric Statistics, 24(2), 359-377. · Zbl 1241.62119
[6] Dahlhaus, R. (2012). Locally stationary processes, In Handbook of statistics, Vol. 30: Elsevier, pp. 351-413.
[7] Das, S., & Politis, N. (2021). Predictive inference for locally stationary time series with an application to climate data. Journal of the American Statistical Association, 116(534), 919-934. · Zbl 1464.62379
[8] De Livera, A. M., Hyndman, R. J., & Snyder, R. D. (2011). Forecasting time series with complex seasonal patterns using exponential smoothing. Journal of the American Statistical Association, 106(496), 1513-1527. · Zbl 1234.62123
[9] Dette, H., & Wu, W. (2022). Prediction in locally stationary time series. Journal of Business & Economic Statistics. 40(1), 370-381. https://doi.org/10.1080/07350015.2020.1819296 · doi:10.1080/07350015.2020.1819296
[10] Fan, J., & Yao, Q. (2008). Nonlinear time series: Nonparametric and parametric methods: Springer Science and Business Media.
[11] Gu, L., Wang, L., Hrdle, W., & Yang, L. (2014). Simultaneous confidence corridor for varying coefficient regression with sparse functional data. TEST, 23(4), 806-843. · Zbl 1312.62051
[12] Gu, L., & Yang, L. (2015). Oracally efficient estimation for single‐index link function with simultaneous confidence band. Electronic Journal of Statistics, 9(1), 1540-1561. · Zbl 1327.62254
[13] Kong, J., Gu, L., & Yang, L. (2018). Prediction interval for autoregressive time series via oracally efficient estimation of multi‐step‐ahead innovation distribution function. Journal of Time Series Analysis, 39(5), 690-708. · Zbl 1401.62162
[14] Liu, R., & Yang, L. (2010). Spline‐backfitted kernel smoothing of additive coefficient model. Econometric Theory, 26(1), 29-59. · Zbl 1186.62134
[15] Liu, R., & Yang, L. (2016). Spline estimation of a semiparametric GARCH model. Econometric Theory, 32(4), 1023-1054. · Zbl 1442.62751
[16] Lori, A., & William, R. (1990). Bootstrap prediction intervals for autoregression. Journal of the American Statistical Association, 85(410), 486-492. · Zbl 0705.62089
[17] Song, Q., & Yang, L. (2009). Spline confidence bands for variance function. Journal of Nonparametric Statistics, 21(5), 589-609. · Zbl 1165.62317
[18] Wang, J., Cao, G., Wang, L., & Yang, L. (2020). Simultaneous confidence band for the stationary covariance function of dense functional data. Journal of Multivariate Analysis, 176(104), 584.
[19] Wang, J., Liu, R., Cheng, F., & Yang, L. (2014). Oracally efficient estimation of autoregressive error distribution with simultaneous confidence band. Annals of Statistics, 42, 654-668. · Zbl 1308.62096
[20] Wang, J., & Yang, L. (2009). Polynomial spline confidence bands for regression curves. Statistica Sinica, 19(1), 325-342. · Zbl 1225.62055
[21] Wang, L., & Yang, L. (2007). Spline‐backfitted kernel smoothing of nonlinear additive autoregression model. Annals of Statistics, 35(6), 2474-2503. · Zbl 1129.62038
[22] Xue, L., & Yang, L. (2006). Additive coefficient modeling via polynomial spline. Statistica Sinica, 16(4), 1423-1446. · Zbl 1109.62030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.