×

A new approach about equilibrium problems via Busemann functions. (English) Zbl 1542.90255

Summary: In this paper, we consider the resolvent via Busemann functions introduced by G. de C. Bento et al. [J. Optim. Theory Appl. 195, No. 3, 1087–1105 (2022; Zbl 1542.90254)], and we present a proximal point method for equilibrium problems on Hadamard manifolds. The resolvent in consideration is a natural extension of its counterpart in linear settings, proposed and analyzed by P. L. Combettes and S. A. Hirstoaga [J. Nonlinear Convex Anal. 6, No. 1, 117–136 (2005; Zbl 1109.90079)]. The advantage of using this resolvent is that the term performing regularization is a convex function in general Hadamard manifolds, allowing us to explore the asymptotic behavior of the proximal point method to solve equilibrium problems.

MSC:

90C48 Programming in abstract spaces
Full Text: DOI

References:

[1] Ansari, Q.; Yao, J., An existence result for the generalized vector equilibrium problem, Appl. Math. Lett., 12, 8, 53-56 (1999) · Zbl 1014.49008
[2] Ballmann, W., Gromov, M., Schroeder, V.: Manifolds of Nonpositive Curvature, vol. 61. Springer Science & Business Media (2013) · Zbl 0591.53001
[3] Batista, EE; Bento, G.; Ferreira, OP, An existence result for the generalized vector equilibrium problem on Hadamard manifolds, J. Optimizat. Theory Appl., 167, 2, 550-557 (2015) · Zbl 1327.90332
[4] Bento, G.C., Cruz Neto, J.X., Melo, Í., D.L.: Combinatorial convexity in Hadamard manifolds: existence for equilibrium problems. J. Optimiz. Theory Appl. 195(3), 1087-1105 (2022) · Zbl 1542.90254
[5] Bento, G.C., Cruz Neto, J.X., Soares Jr, P.A., Soubeyran, A.: A new regularization of equilibrium problems on Hadamard manifolds. applications to theories of desires. Ann. Oper. Res. 316(2), 1301-1318 (2022) · Zbl 1495.65076
[6] Bento, G.C., Cruz Neto, J.X., Melo, Í.D.L.: Fenchel conjugate via Buseman function on Hadamard manifolds. Appl. Math. Optimiz. 88(3), 83-102 (2023) · Zbl 1538.90102
[7] Bianchi, M.; Schaible, S., Generalized monotone bifunctions and equilibrium problems, J. Optimiz. Theory Appl., 90, 1, 31-43 (1996) · Zbl 0903.49006
[8] Blum, E., From optimization and variational inequalities to equilibrium problems, Math. Stud., 63, 123-145 (1994) · Zbl 0888.49007
[9] Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature, vol. 319. Springer Science & Business Media (2013) · Zbl 0988.53001
[10] Busemann, H., The geometry of geodesics (1955), New York: Academic Press, New York · Zbl 0112.37002
[11] Busemann, H.; Phadke, B., Novel results in the geometry of geodesics, Adv. Math., 101, 2, 180-219 (1993) · Zbl 0792.53046
[12] Carmo, M.P.d.: Riemannian geometry. Birkhäuser (1992)
[13] Chadli, O.; Chiang, Y.; Yao, JC, Equilibrium problems with lower and upper bounds, Appl. Math. Lett., 15, 3, 327-331 (2002) · Zbl 1175.90411
[14] Colao, V.; López, G.; Marino, G.; Martin-Marquez, V., Equilibrium problems in Hadamard manifolds, J. Math. Anal. Appl., 388, 1, 61-77 (2012) · Zbl 1273.49015
[15] Combettes, PL; Hirstoaga, SA, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6, 1, 117-136 (2005) · Zbl 1109.90079
[16] Fan, K., A generalization of Tychonoff’s fixed point theorem, Mathematische Annalen, 142, 3, 305-310 (1961) · Zbl 0093.36701
[17] Ferreira, O.; Oliveira, P., Proximal point algorithm on Riemannian manifolds, Optimization, 51, 2, 257-270 (2002) · Zbl 1013.49024
[18] Iusem, AN; Kassay, G.; Sosa, W., On certain conditions for the existence of solutions of equilibrium problems, Math. Program., 116, 1, 259-273 (2009) · Zbl 1158.90009
[19] Iusem, AN; Sosa, W., New existence results for equilibrium problems, Nonlinear Anal. Theory Meth. Appl., 52, 2, 621-635 (2003) · Zbl 1017.49008
[20] Knaster, B.; Kuratowski, C.; Mazurkiewicz, S., Ein beweis des fixpunktsatzes für n-dimensionale simplexe, Fundamenta Mathematicae, 14, 1, 132-137 (1929) · JFM 55.0972.01
[21] Kristály, A., Location of Nash equilibria: a Riemannian geometrical approach, Proceedings of the American Mathematical Society, 138, 5, 1803-1810 (2010) · Zbl 1189.91018
[22] Kristály, A., Nash-type equilibria on Riemannian manifolds: a variational approach, J. de Mathématiques Pures et Appliquées, 101, 5, 660-688 (2014) · Zbl 1302.91010
[23] Li, C.; López, G.; Martín-Márquez, V., Monotone vector fields and the proximal point algorithm on Hadamard manifolds, J. London Math. Soc., 79, 3, 663-683 (2009) · Zbl 1171.58001
[24] Li, C.; Yao, JC, Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm, SIAM J. Control Optimiz., 50, 4, 2486-2514 (2012) · Zbl 1257.49011
[25] Li, P.; Tam, LF, Positive harmonic functions on complete manifolds with non-negative curvature outside a compact set, Ann. Math., 125, 1, 171-207 (1987) · Zbl 0622.58001
[26] Li, SL; Li, C.; Liou, YC; Yao, JC, Existence of solutions for variational inequalities on Riemannian manifolds, Nonlinear Anal. Theory Meth. Appl., 71, 11, 5695-5706 (2009) · Zbl 1180.58012
[27] Németh, S., Variational inequalities on Hadamard manifolds, Nonlinear Anal. Theory Meth. Appl., 52, 5, 1491-1498 (2003) · Zbl 1016.49012
[28] Niculescu, CP; Rovenţa, I., Fan’s inequality in geodesic spaces, Appl. Math. Lett., 22, 10, 1529-1533 (2009) · Zbl 1171.26332
[29] Park, S., Riemannian manifolds are KKM spaces, Adv. Theory Nonlinear Anal. Appl., 3, 2, 64-73 (2019) · Zbl 1438.58003
[30] Park, S., Coupled fixed point problem in abstract convex spaces, J. Inf. Math. Sci., 12, 4, 247-256 (2020)
[31] Sakai, T., On Riemannian manifolds admitting a function whose gradient is of constant norm, Kodai Math. J., 19, 1, 39-51 (1996) · Zbl 0881.53035
[32] Sakai, T.: Riemannian Geometry, vol. 149 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI (1996) · Zbl 0886.53002
[33] Shiohama, K., Busemann functions and total curvature, Inventiones Mathematicae, 53, 3, 281-297 (1979) · Zbl 0433.53050
[34] Sormani, C., Busemann functions on manifolds with lower bounds on Ricci curvature and minimal volume growth, J. Diff. Geom., 48, 3, 557-585 (1998) · Zbl 0901.53029
[35] Tang, GJ; Zhou, LW; Huang, NJ, The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds, Optimiz. Lett., 7, 779-790 (2013) · Zbl 1328.49006
[36] Udriste, C.: Convex Functions and Optimization Methods on Riemannian Manifolds, vol. 297. Springer Science & Business Media (1994) · Zbl 0932.53003
[37] Zhou, Lw., Huang, N.j.: A revision on geodesic pseudo-convex combination and Knaster-Kuratowski-Mazurkiewicz theorem on Hadamard manifolds. J. Optimiz. Theory Appl. 182(3), 1186-1198 (2019) · Zbl 1429.49013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.