×

Metrically regular vector field and iterative processes for generalized equations in Hadamard manifolds. (English) Zbl 1387.90241

Summary: This paper is focused on the problem of finding a singularity of the sum of two vector fields defined on a Hadamard manifold, or more precisely, the study of a generalized equation in a Riemannian setting. We extend the concept of metric regularity to the Riemannian setting and investigate its relationship with the generalized equation in this new context. In particular, a version of Graves’s theorem is presented and we also define some concepts related to metric regularity, including the Aubin property and the strong metric regularity of set-valued vector fields. A conceptual method for finding a singularity of the sum of two vector fields is also considered. This method has as particular instances: the proximal point method, Newton’s method, and Zincenko’s method on Hadamard manifolds. Under the assumption of metric regularity at the singularity, we establish that the methods are well defined in a suitable neighborhood of the singularity. Moreover, we also show that each sequence generated by these methods converges to this singularity at a superlinear rate.

MSC:

90C30 Nonlinear programming
49M37 Numerical methods based on nonlinear programming
65K05 Numerical mathematical programming methods
Full Text: DOI

References:

[1] Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008) · Zbl 1147.65043 · doi:10.1515/9781400830244
[2] Adler, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22(3), 359-390 (2002) · Zbl 1056.92002 · doi:10.1093/imanum/22.3.359
[3] Hosseini, S., Pouryayevali, M.R.: Nonsmooth optimization techniques on Riemannian manifolds. J. Optim. Theory Appl. 158(2), 328-342 (2013) · Zbl 1273.90110 · doi:10.1007/s10957-012-0250-z
[4] Wang, J.H.: Convergence of Newton’s method for sections on Riemannian manifolds. J. Optim. Theory Appl. 148(1), 125-145 (2011) · Zbl 1228.90155 · doi:10.1007/s10957-010-9748-4
[5] Da Cruz Neto, J.X., Ferreira, O.P., Pérez, L.R.L., Németh, S.Z.: Convex- and monotone-transformable mathematical programming problems and a proximal-like point method. J. Global Optim. 35(1), 53-69 (2006) · Zbl 1104.90035 · doi:10.1007/s10898-005-6741-9
[6] Rapcsák, T.: Smooth Nonlinear Optimization in \[{\bf R}^nRn\], Nonconvex Optimization and its Applications, vol. 19. Kluwer Academic Publishers, Dordrecht (1997) · Zbl 1009.90109 · doi:10.1007/978-1-4615-6357-0
[7] Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51(2), 257-270 (2002) · Zbl 1013.49024 · doi:10.1080/02331930290019413
[8] Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. (2) 79(3), 663-683 (2009) · Zbl 1171.58001 · doi:10.1112/jlms/jdn087
[9] Li, C., Yao, J.C.: Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control Optim. 50(4), 2486-2514 (2012) · Zbl 1257.49011 · doi:10.1137/110834962
[10] Wang, J.H., López, G., Martín Márquez, V., Li, C.: Monotone and accretive vector fields on Riemannian manifolds. J. Optim. Theory Appl. 146(3), 691-708 (2010) · Zbl 1208.53049 · doi:10.1007/s10957-010-9688-z
[11] Bergmann, R., Persch, J., Steidl, G.: A parallel Douglas-Rachford algorithm for minimizing ROF-like functionals on images with values in symmetric Hadamard manifolds. SIAM J. Imaging Sci. 9(3), 901-937 (2016) · Zbl 1346.65006 · doi:10.1137/15M1052858
[12] Bačák, M., Bergmann, R., Steidl, G., Weinmann, A.: A second order nonsmooth variational model for restoring manifold-valued images. SIAM J. Sci. Comput. 38(1), A567-A597 (2016) · Zbl 1382.94007 · doi:10.1137/15M101988X
[13] Hawe, S., Kleinsteuber, M., Diepold, K.: Analysis operator learning and its application to image reconstruction. IEEE Trans. Image Process. 22(6), 2138-2150 (2013) · Zbl 1373.94161 · doi:10.1109/TIP.2013.2246175
[14] Freifeld, O., Black, M.J.: Lie bodies: a manifold representation of 3D human shape. In: Proceedings of ECCV 2012. Springer, Berlin (2012)
[15] Park, F.C., Bobrow, J.E., Ploen, S.R.: A Lie group formulation of robot dynamics. Int. J. Robot. Res. 14(6), 609-618 (1995) · doi:10.1177/027836499501400606
[16] Bhattacharya, A., Bhattacharya, R.: Statistics on Riemannian manifolds: asymptotic distribution and curvature. Proc. Am. Math. Soc. 136(8), 2959-2967 (2008) · Zbl 1274.62337 · doi:10.1090/S0002-9939-08-09445-8
[17] Fletcher, P.T.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vis. 105(2), 171-185 (2013) · Zbl 1304.62092 · doi:10.1007/s11263-012-0591-y
[18] Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings, A View from Variational Analysis first/second edn. Springer series in operations research and financial engineering. Springer, New York (2009/2014) · Zbl 1178.26001
[19] Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. 52(5), 1491-1498 (2003) · Zbl 1016.49012 · doi:10.1016/S0362-546X(02)00266-3
[20] Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71(11), 5695-5706 (2009) · Zbl 1180.58012 · doi:10.1016/j.na.2009.04.048
[21] Aragón Artacho, F.J., Dontchev, A.L., Geoffroy, M.H.: Convergence of the proximal point method for metrically regular mappings. In: CSVAA 2004—Control Set-Valued Analysis and Applications, ESAIM Proceedings, vol. 17, pp. 1-8. EDP Sciences, Les Ulis (2007) · Zbl 1235.90180
[22] Aragón Artacho, F.J., Geoffroy, M.H.: Characterization of metric regularity of subdifferentials. J. Convex Anal. 15(2), 365-380 (2008) · Zbl 1146.49012
[23] Geoffroy, M.H., Piétrus, A.: An iterative method for perturbed generalized equations. C. R. Acad. Bulg. Sci. 57(11), 7-12 (2004) · Zbl 1072.47056
[24] Wang, J., Li, C., Lopez, G., Yao, J.C.: Proximal point algorithms on Hadamard manifolds: linear convergence and finite termination. SIAM J. Optim. 26(4), 2696-2729 (2016) · Zbl 1354.49069 · doi:10.1137/15M1051257
[25] Sakai, T.: Riemannian Geometry, Translations of Mathematical Monographs, vol. 149. American Mathematical Society, Providence (1996) · Zbl 0886.53002
[26] Fernandes, T.A., Ferreira, O.P., Yun, Y.J.: On the superlinear convergence of Newton’s method on Riemannian manifolds. J. Optim. Theory Appl. (2017). https://doi.org/10.1007/s10957-017-1107-2 · Zbl 1373.90149 · doi:10.1007/s10957-017-1107-2
[27] Colao, V., López, G., Marino, G., Martín-Márquez, V.: Equilibrium problems in Hadamard manifolds. J. Math. Anal. Appl. 388(1), 61-77 (2012) · Zbl 1273.49015 · doi:10.1016/j.jmaa.2011.11.001
[28] Bačák, M.: The proximal point algorithm in metric spaces. Israel J. Math. 194(2), 689-701 (2013) · Zbl 1278.49039 · doi:10.1007/s11856-012-0091-3
[29] Jost, J.: Riemannian Geometry and Geometric Analysis. Universitext. Springer, Berlin (1995) · Zbl 0828.53002 · doi:10.1007/978-3-662-03118-6
[30] da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Contributions to the study of monotone vector fields. Acta Math. Hung. 94(4), 307-320 (2002) · Zbl 0997.53012 · doi:10.1023/A:1015643612729
[31] Sakai, T.: Comparison and Finiteness Theorems in Riemannian Geometry. In: Geometry of geodesics and related topics (Tokyo, 1982), Adv. Stud. Pure Math., vol. 3, pp. 125-181. North-Holland, Amsterdam (1984) · Zbl 0578.53028
[32] Yamamoto, T.: Historical developments in convergence analysis for Newton’s and Newton-like methods. J. Comput. Appl. Math. 124(1-2), 1-23 (2000) · Zbl 0965.65079 · doi:10.1016/S0377-0427(00)00417-9
[33] da Cruz Neto, J.X., de Lima, L.L., Oliveira, P.R.: Geodesic algorithms in Riemannian geometry. Balk. J. Geom. Appl. 3(2), 89-100 (1998) · Zbl 1033.58018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.