×

Nonexistence of marginally trapped surfaces and geons in \(2 + 1\) gravity. (English) Zbl 1252.83011

Summary: We use existence results for Jang’s equation and marginally outer trapped surfaces (MOTSs) in \(2 + 1\) gravity to obtain nonexistence of geons in \(2 + 1\) gravity. In particular, our results show that any \(2 + 1\) initial data set, which obeys the dominant energy condition with cosmological constant \(\Lambda \geq 0\) and which satisfies a mild asymptotic condition, must have trivial topology. Moreover, any data set obeying these conditions cannot contain a MOTS. The asymptotic condition involves a cutoff at a finite boundary at which a null mean convexity condition is assumed to hold; this null mean convexity condition is satisfied by all the standard asymptotic boundary conditions. The results presented here strengthen various aspects of previous related results in the literature. These results not only have implications for classical \(2 + 1\) gravity but also apply to quantum \(2 + 1\) gravity when formulated using Witten’s solution space quantization.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C80 Analogues of general relativity in lower dimensions
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
53Z05 Applications of differential geometry to physics
83C57 Black holes
83C75 Space-time singularities, cosmic censorship, etc.

References:

[1] Wheeler J.A.: Geons. Phys. Rev. 97, 511 (1955) · Zbl 0064.22404 · doi:10.1103/PhysRev.97.511
[2] Wheeler J.A.: On the nature of quantum geometrodynamics. Ann. Phys 2, 604 (1957) · Zbl 0078.19201 · doi:10.1016/0003-4916(57)90050-7
[3] Misner C.W., Wheeler J.A.: Classical physics as geometry: Gravitation, electromagnetism, unquantized charge, and mass as properties of curved empty space. Ann. Phys. 2, 525 (1957) · Zbl 0078.19106 · doi:10.1016/0003-4916(57)90049-0
[4] Brill D.R., Wheeler J.A.: Interaction of neutrinos and gravitational fields. Rev. Mod. Phys 29, 465 (1957) · Zbl 0078.43503 · doi:10.1103/RevModPhys.29.465
[5] Ernst F.J. Jr.: Linear and toroidal geons. Phys. Rev 105, 1665 (1665)
[6] Brill D.R., Hartle J.B.: Method of the self-consistent field in general relativity and its application to the gravitational geon. Phys. Rev 135, B271 (1964) · Zbl 0119.24001 · doi:10.1103/PhysRev.135.B271
[7] Sorkin R.: The quantum electromagnetic field in multiply connected space. J. Phys. A 12, 403 (1979) · Zbl 0403.53032 · doi:10.1088/0305-4470/12/3/016
[8] Friedman J.L., Sorkin R.D.: Spin 1/2 from gravity. Phys. Rev. Lett. 44, 1100 (1980) · doi:10.1103/PhysRevLett.44.1100
[9] Friedman J.L., Sorkin R.D.: Half integral spin from quantum gravity. Gen. Rel. Grav 14, 615 (1982) · Zbl 0996.83503
[10] Sorkin, R.D.: Introduction to topological geons. In: Topological properties and global structure of spacetime. Proceedings, NATO Advanced Study Institute Series B: Physics V. 138, eds. Bergmann and De Sabbata, New York: Plenum, 1986 · Zbl 0692.58011
[11] Friedman J.l., Witt D.M.: Internal symmetry groups of quantum geons. Phys. Lett. B 120, 324 (1983) · doi:10.1016/0370-2693(83)90454-9
[12] Witt D.M.: Symmetry groups of state vectors in canonical quantum gravity. J. Math. Phys 27, 573 (1986) · doi:10.1063/1.527211
[13] Friedman J.L., Witt D.M.: Homotopy is not isotopy for homeomorphisms of 3-Manifolds. Topology 25, 35 (1986) · Zbl 0596.57008 · doi:10.1016/0040-9383(86)90003-0
[14] Friedman J.L., Witt D.M.: Problems on diffeomorphisms arising from quantum gravity. Contemp. Math 71, 301 (1988) · Zbl 0655.57007 · doi:10.1090/conm/071/954424
[15] Witt D.M.: Vacuum space-times that admit no maximal slice. Phys. Rev. Lett. 57, 1386 (1986) · doi:10.1103/PhysRevLett.57.1386
[16] Witten E.: (2+1)-dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46 (1988) · Zbl 1258.83032 · doi:10.1016/0550-3213(88)90143-5
[17] S. Carlip, Quantum gravity in 2+1 dimensions. Cambridge, UK: Univ. Pr., 1998 · Zbl 0919.53024
[18] Carlip S.: Quantum gravity in 2+1 dimensions: The case of a closed universe. Living Rev. Rel. 8, 1 (2005) · Zbl 1071.83024
[19] Witten, E.: Three-dimensional gravity revisited. http://arXiv.org/abs/0706.3359v1 [hep-th], 2007 · Zbl 1200.17014
[20] Carlip S., Deser S., Waldron A., Wise D.K.: Cosmological Topologically Massive Gravitons and Photons. Class. Quant. Grav. 26, 075008 (2009) · Zbl 1161.83395 · doi:10.1088/0264-9381/26/7/075008
[21] Carlip S., Deser S., Waldron A., Wise D.K.: Topologically massive AdS gravity. Phys. Lett. B 666, 272 (2008) · Zbl 1161.83395 · doi:10.1016/j.physletb.2008.07.057
[22] Li W., Song W., Strominger A.: Chiral gravity in three dimensions. JHEP 0804, 082 (2008) · Zbl 1246.83158 · doi:10.1088/1126-6708/2008/04/082
[23] Stevens K.A., Schleich K., Witt D.M.: Non-existence of asymptotically flat geons in 2+1 Gravity. Class. Quant. Grav. 26, 075012 (2009) · Zbl 1161.83398 · doi:10.1088/0264-9381/26/7/075012
[24] Friedman, J.L., Schleich, K., Witt, D.M.: Topological censorship. Phys. Rev. Lett. 71, 1486 (1993) [Erratum-ibid. 75, 1872 (1995)] · Zbl 1020.83630
[25] Galloway G.J., Schleich K., Witt D.M., Woolgar E.: Topological censorship and higher genus black holes. Phys. Rev. D 60, 104039 (1999) · Zbl 0977.81130 · doi:10.1103/PhysRevD.60.104039
[26] Galloway G.J., Schleich K., Witt D., Woolgar E.: The AdS/CFT correspondence conjecture and topological censorship. Phys. Lett. B 505, 255 (2001) · Zbl 0977.81130 · doi:10.1016/S0370-2693(01)00335-5
[27] Ida D.: No black hole theorem in three-dimensional gravity. Phys. Rev. Lett. 85, 3758 (2000) · Zbl 1369.83045 · doi:10.1103/PhysRevLett.85.3758
[28] Andersson L., Metzger J.: Curvature estimates for stable marginally trapped surfaces. J. Diff. Geom. 84, 231–265 (2010) · Zbl 1201.53066
[29] Andersson L., Metzger J.: The area of horizons and the trapped region. Commun. Math. Phys. 290, 941–972 (2009) · Zbl 1205.53071 · doi:10.1007/s00220-008-0723-y
[30] Eichmair M.: The plateau problem for marginally outer trapped surfaces. J. Diff. Geom. 83, 551–583 (2009) · Zbl 1197.53075
[31] Eichmair M.: Existence, regularity, and properties of generalized apparent horizons, Commun. Math. Phys. 294, 745–760 (2010) · Zbl 1215.53023 · doi:10.1007/s00220-009-0970-6
[32] Andersson, L., Eichmair, M., Metzger, J.: Jang’s equation and its applications to marginally trapped surfaces. arXiv:1006.4601, to appear in the Proceedings of the Conference on Complex Analysis and Dynamical Systems IV, (Nahariya, Israel 2009), Providence, RI: Amer. Math. Soc/Ramat Gan, Israel: Bar-Ilan Univ., 2011 · Zbl 1235.53019
[33] Schoen R., Yau S.-T.: The existence of a black hole due to condensation of matter. Comm. Math. Phys. 90, 575–579 (1983) · Zbl 0541.53054 · doi:10.1007/BF01216187
[34] Yau S.T.: Geometry of three manifolds and existence of black hole due to boundary effect. Adv. Theor. Math. Phys. 5, 755–767 (2001) · Zbl 1019.53016
[35] Galloway G.J.: Rigidity of marginally trapped surfaces and the topology of black holes. Comm. Anal. Geom. 16, 217–229 (2008) · Zbl 1147.83005 · doi:10.4310/CAG.2008.v16.n1.a7
[36] Banados M., Teitelboim C., Zanelli J.: The black hole in three-dimensional space-time. Phys. Rev. Lett. 69, 1849 (1992) · Zbl 0968.83514 · doi:10.1103/PhysRevLett.69.1849
[37] Brill D.R.: Multi-black-hole geometries in (2+1)-dimensional gravity. Phys. Rev. D 53, 4133 (1996) · doi:10.1103/PhysRevD.53.R4133
[38] Aminneborg S., Bengtsson I., Brill D., Holst S., Peldan P.: Black holes and wormholes in 2+1 dimensions. Class. Quant. Grav. 15, 627 (1998) · Zbl 0913.53041 · doi:10.1088/0264-9381/15/3/013
[39] Aminneborg S., Bengtsson I., Holst S.: A spinning anti-de Sitter wormhole. Class. Quant. Grav. 16, 363 (1999) · Zbl 0942.83047 · doi:10.1088/0264-9381/16/2/004
[40] Hawking S.W., Ellis G.F.R.: The large scale structure of space-time. Cambridge Monographs on Mathematical Physics, No. 1. London, Cambridge University Press (1973) · Zbl 0265.53054
[41] Chrusciel P.T., Galloway G.J., Solis D.: Topological censorship for Kaluza-Klein space-times. Ann. Henri Poincaré 10, 893–912 (2009) · Zbl 1207.83052 · doi:10.1007/s00023-009-0005-z
[42] Ashtekar, A., Krishnan, B.: Isolated and dynamical horizons and their applications. Living Reviews in Relativity 7(10) (2004) · Zbl 1071.83036
[43] Schoen R., Yau S.T.: Proof of the positive mass theorem. II. Commun. Math. Phys. 79, 231–260 (1981) · Zbl 0494.53028 · doi:10.1007/BF01942062
[44] Andersson L., Mars M., Simon W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102 (2005) · doi:10.1103/PhysRevLett.95.111102
[45] Andersson L., Mars M., Simon W.: Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes. Adv. Theor. Math. Phys. 12, 853–888 (2008) · Zbl 1149.83015 · doi:10.4310/ATMP.2008.v12.n4.a5
[46] Galloway G.J., Schoen R.: A generalization of Hawking’s black hole topology theorem to higher dimensions. Commun. Math. Phys. 266, 571–576 (2006) · Zbl 1190.53070 · doi:10.1007/s00220-006-0019-z
[47] Hawking, S.W.: In: Black holes, eds. C. DeWitt, B. DeWitt. New York: Gordon and Breach, 1973, No. 1
[48] Helfgott C., Oz Y., Yanay Y.: On the topology of black hole event horizons in higher dimensions. JHEP 0602, 025 (2006) · doi:10.1088/1126-6708/2006/02/025
[49] Evans, L.C.: Partial differential equations. Graduate Studies in Mathematics, Vol. 19, Providence, RI: Amer. Math. Soc., 1998 · Zbl 0902.35002
[50] Besse, A.L. Einstein manifolds. Berlin: Springer-Verlag 1987, Ergebnisse der Mathematik und ihrer Grenzgebiete (3)
[51] Schoen, R.: Lecture at the Miami Waves Conference. January, 2005
[52] Jang P.S.: On the positivity of energy in general relativity. J. Math. Phys. 19, 1152–1155 (1978) · doi:10.1063/1.523776
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.