×

Uniform stabilization of Boussinesq systems in critical \(\mathbf{L}^q \)-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls. (English) Zbl 1452.35229

Summary: We consider the \(d\)-dimensional Boussinesq system defined on a sufficiently smooth bounded domain, with homogeneous boundary conditions, and subject to external sources, assumed to cause instability. The initial conditions for both fluid and heat equations are taken of low regularity. We then seek to uniformly stabilize such Boussinesq system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of explicitly constructed, feedback controls, which are localized on an arbitrarily small interior subdomain. In addition, they will be minimal in number, and of reduced dimension: more precisely, they will be of dimension \((d-1) \) for the fluid component and of dimension 1 for the heat component. The resulting space of well-posedness and stabilization is a suitable, tight Besov space for the fluid velocity component (close to \(\mathbf{L}^3(\Omega)\) for \(d = 3\)) and the space \( L^q(\Omega)\) for the thermal component, \( q > d \). Thus, this paper may be viewed as an extension of I. Lasiecka, B. Priyasad and R. Triggiani [“Uniform stabilization of Navier-Stokes equations in critical \(L^q\)-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls”, Appl. Math. Optim. (2019; doi.org/10.1007/s00245-019-09607-9)], where the same interior localized uniform stabilization outcome was achieved by use of finite dimensional feedback controls for the Navier-Stokes equations, in the same Besov setting.

MSC:

35Q93 PDEs in connection with control and optimization
35B35 Stability in context of PDEs
35K40 Second-order parabolic systems
93C20 Control/observation systems governed by partial differential equations
93B52 Feedback control
76D05 Navier-Stokes equations for incompressible viscous fluids
80A17 Thermodynamics of continua

References:

[1] H. Amann, Linear and Quasilinear Parabolic Problems: Volume I: Abstract Linear Theory, Monographs in Mathematics, 89. Birkhäuser Boston, Inc., Boston, MA, 1995. · Zbl 0819.35001
[2] H. Amann, On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech., 2, 16-98 (2000) · Zbl 0989.35107 · doi:10.1007/s000210050018
[3] P. Acevedo Tapia, \(L^p\)-Theory for the Boussinesq System, Ph.D theis, Universidad de Chille, Faculatad de Ciencias Fisicas y Mathematicas, Departamento de Ingeniearia Mathematica, Santiago de Chille, 2015.
[4] P. Acevedo; C. Amrouche; C. Conca, Boussinesq system with non-homogeneous boundary conditions, Appl. Math. Lett., 53, 39-44 (2016) · Zbl 1333.35175 · doi:10.1016/j.aml.2015.09.015
[5] P. Acervedo; C. Amrouche; C. Conca, \(L^p\) theory for Boussinesq system with Dirichlet boundary conditions, Appl. Anal., 98, 272-294 (2019) · Zbl 1409.35165 · doi:10.1080/00036811.2018.1530762
[6] A. V. Balakrishnan, Applied Functional Analysis, Second edition, Applications of Mathematics, 3. Springer-Verlag, New York-Berlin, 1981. · Zbl 0459.46014
[7] M. Badra, Abstract settings for stabilization of nonlinear parabolic systems with Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control, Discrete and Continuous Dynamical Systems, 32, 1169-1208 (2012) · Zbl 1235.93200 · doi:10.3934/dcds.2012.32.1169
[8] V. Barbu,, Stabilization of Navier-Stokes flows, Springer, 2011. · Zbl 1213.76001
[9] R. W. Brockett, Asymptotic and feedback stabilization, Differential Geometric Control Theory, Birkhäuser, Basel, (1983), 181-191. · Zbl 0528.93051
[10] G. Basile and G. Marro, Controlled and Conditioned Invariant in Linear System Theory, Prentice Hall, Inc., Englewood Cliffs, NJ, 1992. · Zbl 0758.93002
[11] V. Barbu; R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53, 1443-1494 (2004) · Zbl 1073.76017 · doi:10.1512/iumj.2004.53.2445
[12] V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Mem. Amer. Math. Soc., 181 (2006), x+128 pp. · Zbl 1098.35026
[13] V. Barbu; I. Lasiecka; R. Triggiani, Abstract settings fr tangential boundary stabilization of Naiver Stokes equations by high-and low-gain feedback controllers, Nonlinear Analysis, 64, 2704-2746 (2006) · Zbl 1098.35025 · doi:10.1016/j.na.2005.09.012
[14] V. Barbu; I. Lasiecka; R. Triggiani, Local exponential stabilization strategies of the Navier Stokes equations, \(d = 2, 3\), via feedback stabilization of its linearization, Optimal of Coupled Systems of Partial Differential Equations, Internat. Ser. Numer. Math., Birkhäuser, Basel, 155, 13-46 (2007) · Zbl 1239.93094 · doi:10.1007/978-3-7643-7721-2_2
[15] J. A. Burns and W. Hu, Approximation methods for boundary control of the Boussinesq equations, 52nd IEEE Conference on Decision and Control. IEEE, (2013), 454-459.
[16] J. A. Burns; X. M. He; W. W. Hu, Feedback stabilization of a thermal fluid system with mixed boundary control, Computers and Mathematics with Applications, 71, 2170-2191 (2016) · Zbl 1443.76128 · doi:10.1016/j.camwa.2016.01.011
[17] E. Fernández-Cara; S. Guerrero; O. Yu. Imanuvilov; J.-P. Puel, Some controllability results of the \(N\) dimensional Navier-Stokes and Boussinesq systems with \(N-1\) sacalar controls, SIAM J. Control and Optim., 45, 146-173 (2006) · Zbl 1109.93006 · doi:10.1137/04061965X
[18] C. T. Chen, Linear Systems Theory and Design, Oxford University Press, 1984, 334 pp.
[19] P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. · Zbl 0687.35071
[20] J.-M. Coron, On the controllability of the 2-d incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Control Optim. Calc. Var., 1, 35-75 (1995/96) · Zbl 0872.93040 · doi:10.1051/cocv:1996102
[21] J.-M. Coron, On the controllability of \(2\)-d incompressible perfect fluids, J. Math. Pures Appl. (9), 75, 155-188 (1996) · Zbl 0848.76013
[22] J.-M. Coron; S. Guerrero, Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component, J. Math. Pures Appl. (9), 92, 528-545 (2009) · Zbl 1179.35209 · doi:10.1016/j.matpur.2009.05.015
[23] J.-M. Coron; S. Guerrero, Null controllability of the \(N\) dimensional Stikes system with \(N-1\) scalar controls, J. Differential Equations, 246, 2908-2921 (2009) · Zbl 1172.35042 · doi:10.1016/j.jde.2008.10.019
[24] J.-M. Coron; P. Lissy, Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components, Inv. Math., 198, 833-880 (2014) · Zbl 1308.35163 · doi:10.1007/s00222-014-0512-5
[25] R. Danchin and P. Mucha, Critical functional framework and maximal regularity in action on systems of incompressible flows, Mém. Soc. Math. Fr. (N.S.), (2015). · Zbl 1335.35179
[26] L. De Simon, Un’applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rendiconti del Seminario Matematico della Universita di Padova, 34, 205-223 (1964) · Zbl 0196.44803
[27] G. Dore, Maximal regularity in \(L^p\) spaces for an abstract Cauchy problem, Advances in Differential Equations, 5, 293-322 (2000) · Zbl 0993.34058
[28] L. Escauriaza; G. A. Seregin; V. Šverák, \(L_{3, \infty}\)-solutions of Navier-Stokes equations and backward uniqueness, Math. Surveys, 58, 211-250 (2003) · Zbl 1064.35134 · doi:10.1070/RM2003v058n02ABEH000609
[29] E. Fabes; O. Mendez; M. Mitrea, Boundary layers of Sobolev-Besov spaces and Poisson’s equations for the Laplacian for the Lipschitz domains, J. Func. Anal., 159, 323-368 (1998) · Zbl 0930.35045 · doi:10.1006/jfan.1998.3316
[30] E. Fernandez-Cara; S. Guerrero; O. Y. Imanuvilov; J.-P. Puel, Some controllability results for the \(N\)-dimensional Navier-Stokes and Boussinesq systems with \(N-1\) scalar controls, SIAM J. Control Optim., 45, 146-173 (2006) · Zbl 1109.93006 · doi:10.1137/04061965X
[31] E. Fernandez-Cara, M. Santos and D. A. Souza, Boundary controllability of incompressibel Euler fluids with Boussinesq heat effects, Math. Control Signals Systems, 28 (2016), Art. 7, 28 pp. · Zbl 1338.93073
[32] C. Foias; R. Temam, Determination of the solution of the Navier-Stokes equations by a set of nodal values, Mathematics of Computation, 43, 117-133 (1984) · Zbl 0563.35058 · doi:10.1090/S0025-5718-1984-0744927-9
[33] C. Fabre; G. Lebeau, Prolongement unique des solutions de l’equation de Stokes, Comm. Part. Diff. Eqts., 21, 573-596 (1996) · Zbl 0849.35098 · doi:10.1080/03605309608821198
[34] C. Fabre, Uniqueness results for Stokes Equations and their consequences in linear and nonlinear control problems, ESAIM Control Optim. Calc. Var., 1, 267-302 (1995/96) · Zbl 0872.93039 · doi:10.1051/cocv:1996109
[35] A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary control, Discrete and Continuous Dynamical Systems, 10, 289-314 (2004) · Zbl 1174.93675 · doi:10.3934/dcds.2004.10.289
[36] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Volume I: Nonlinear Steady Problems, Springer Tracts in Natural Philosophy, 38. Springer-Verlag, New York, 1994. · Zbl 0949.35004
[37] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Volume II: Linearized Steady Problems, Springer Tracts in Natural Philosophy, 39. Springer-Verlag, New York, 1994. · Zbl 0949.35005
[38] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, Second edition, Springer Monographs in Mathematics, Springer, New York, 2011. · Zbl 1245.35002
[39] I. Gallagher; G. S. Koch; F. Planchon, A profile decomposition approach to the \(L^{\infty}_t (L^3_x)\) Navier-Stokes regularity criterion, Math. Ann., 355, 1527-1559 (2013) · Zbl 1291.35180 · doi:10.1007/s00208-012-0830-0
[40] M. Geissert; K. Götze; M. Hieber, \({L}_p\)-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized newtonian fluids, Transaction of American Math Society, 365, 1393-1439 (2013) · Zbl 1282.35273 · doi:10.1090/S0002-9947-2012-05652-2
[41] Y. Giga, Analyticity of the semigroup generated by the Stokes operator in \(L_r\) spaces, Math. Z., 178, 279-329 (1981) · Zbl 0473.35064 · doi:10.1007/BF01214869
[42] Y. Giga, Domains of fractional powers of the Stokes operator in \(L_r\) spaces, Arch. Rational Mech. Anal., 89, 251-265 (1985) · Zbl 0584.76037 · doi:10.1007/BF00276874
[43] S. Guerrero, Local exact controllability to the trajectories of the Boussinesq system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23, 29-61 (2006) · Zbl 1098.35027 · doi:10.1016/j.anihpc.2005.01.002
[44] L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators, Classics in Mathematics, Springer, Berlin, 2007. · Zbl 1115.35005
[45] M. Hieber and J. Saal, The Stokes equation in the \(L^p\)-setting: Well-posedness and regularity properties, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, (2018), 117-206.
[46] H. Jia; V. Šverák, Minimal \(L^3\)-initial data for potential Navier-Stokes singularities, SIAM J. Math. Anal., 45, 1448-1459 (2013) · Zbl 1294.35065 · doi:10.1137/120880197
[47] D. A. Jones; E. S. Titi, Upper bounds on the number of determining nodes, and volume elements for the Stokes equations, Indiana University Mathematics Journal, 42, 875-887 (1993) · Zbl 0796.35128 · doi:10.1512/iumj.1993.42.42039
[48] T. Kato, Perturbation Theory of Linear Operators, Die Grundlehren der Mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York, 1966. · Zbl 0148.12601
[49] S. Kesavan, Topics in Functional Analysis and Applications, John Wiley & Sons, Inc., New York, 1989. · Zbl 0666.46001
[50] H. Kim, The existence and uniqueness of very weak solutions of the stationary Boussinesq system, Nonlinear Analysis: Theory, Methods & Applications, 75, 317-330 (2012) · Zbl 1229.35209 · doi:10.1016/j.na.2011.08.035
[51] I. Kukavica; A. Tuffaha, Regularity of solutions to a free boundary problem of fluid-structure interaction, Indiana University Math J., 61, 1817-1859 (2012) · Zbl 1280.35094 · doi:10.1512/iumj.2012.61.4746
[52] P. C. Kunstmann; L. Weis, Perturbation theorems for maximal \(L^p\)-regularity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30, 415-435 (2001) · Zbl 1065.47008
[53] P. C. Kunstmann; L. Weis, Maximal \(L^p\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^{\infty}\)-functional calculus, Functional Analytic Methods for Evolution Equations, Lecture Notes in Math., Springer, Berlin, 1855, 65-311 (2004) · Zbl 1097.47041 · doi:10.1007/978-3-540-44653-8_2
[54] I. Lasiecka; R. Triggiani, Stabilization and structural assignment of Dirichlet boundary feedback parabolic equations, SIAM J. Control Optimiz., 21, 766-803 (1983) · Zbl 0518.93046 · doi:10.1137/0321047
[55] I. Lasiecka; R. Triggiani, Stabilization of Neumann boundary feedback parabolic equations: The case of trace in the feedback loop, Appl. Math. Optimiz., 10, 307-350 (1983) · Zbl 0524.93052 · doi:10.1007/BF01448392
[56] I. Lasiecka; R. Triggiani, Uniform stabilization with arbitrary decay rates of the Oseen equation by finite-dimensional tangential localized interior and boundary controls, Semigroups of Operators - Theory and Applications, Springer Proc. Math. Stat., Springer, Cham, 113, 125-154 (2015) · Zbl 1337.93071 · doi:10.1007/978-3-319-12145-1_8
[57] I. Lasiecka; R. Triggiani, Stabilization to an equilibrium of the Navier-Stokes equations with tangential action of feedback controllers, Nonlinear Analysis, 121, 424-446 (2015) · Zbl 1320.35261 · doi:10.1016/j.na.2015.03.012
[58] I. Lasiecka and R. Triggiani, Control Theory of Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Equations (680pp), Encyclopedia of Mathematics and its Applications Series, Cambridge University Press, 2000.
[59] I. Lasiecka and R. Triggiani, \(L_2(\Sigma)\)-regularity of the boundary \(\rightarrow\) boundary operator \(B^*L\) for hyperbolic and Petrowski PDEs, Abstr. Appl. Anal., (2003), 1061-1139. · Zbl 1064.35100
[60] I. Lasiecka; R. Triggiani, The operator \(B^*L\) for the wave equation with Dirichlet control, Abstract and Applied Analysis, 2004, 625-634 (2004) · Zbl 1065.35171 · doi:10.1155/S1085337504404011
[61] I. Lasiecka; R. Triggiani, Linear hyperbolic and Petrowski-type PDEs with continuous boundary control \(\to\) boundary observation open loop map: Implications on nonlinear boundary stabilization with optimal decay rates, Sobolev Spaces in Mathematics. III, Int. Math. Ser. (N. Y.), Springer, New York, 10, 187-276 (2009) · Zbl 1168.35027 · doi:10.1007/978-0-387-85652-0_5
[62] I. Lasiecka; R. Triggiani, Uniform energy decay rates of Hyperbolic equations with nonlinear boundary and interior dissipation, Control Cybernet., 37, 935-969 (2008) · Zbl 1195.35056
[63] I. Lasiecka, B. Priyasad and R. Triggiani, Uniform stabilization of Navier-Stokes equations in critical \(L^q\)-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls, Appl. Math. Optim., (2019), https://doi.org/10.1007/s00245-019-09607-9. · Zbl 1468.49039
[64] I. Lasiecka, B. Priyasad and R. Triggiani, Uniform stabilization of \(3D\) Navier-Stokes Equations with finite dimensional tangential boundary, localized feedback controllers, submitted.
[65] A.-I. Lefter, On the feedback stabilization of Boussinesq equations, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 57 (2011), 285-310. · Zbl 1249.76024
[66] S. A. Lorca; J. L. Boldrini, Stationary solution for generalized Boussinesq models, Journal of Differential Equations, 124, 389-406 (1996) · Zbl 0879.35122 · doi:10.1006/jdeq.1996.0016
[67] V. N. Maslenniskova; M. Bogovskii, Elliptic boundary values in unbounded domains with noncompact and nonsmooth boundaries, Rend. Sem. Mat. Fis. Milano, 56, 125-138 (1986) · Zbl 0659.35030 · doi:10.1007/BF02925141
[68] A. M. Micheletti, Perturbazione dello spettro dell’ operatore di Laplace in relazione ad una variazione del campo, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 26, 151-169 (1972) · Zbl 0234.35073
[69] H. Morimoto, On the existence of weak solutions of equation of natural convection, J. Fac. Sci. Univ. Tokyo Sec. IA Math., 36, 87-102 (1989) · Zbl 0676.76079
[70] P. Mucha; W. Zajaczkowski, On the existence for the Cauchy-Neumann problem for the Stokes system in \(L_p\) framework, Studia Mathematica, 143, 75-101 (2000) · Zbl 0970.35107 · doi:10.4064/sm-143-1-75-101
[71] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. · Zbl 0516.47023
[72] J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, 105. Birkhäuser/Springer, [Cham], 2016. · Zbl 1435.35004
[73] J. Prüss; R. Schaubelt, Solvability and maximal regularity of parabolic equations with coefficients continuous in time, J. Math. Anal. Appl., 256, 405-430 (2001) · Zbl 0994.35076 · doi:10.1006/jmaa.2000.7247
[74] M. Ramaswamy; J.-P. Raymond; A. Roy, Boundary feedback stabilization of the Boussinesq system with mixed boundary conditions, J. Differential Equations, 266, 4268-4304 (2019) · Zbl 1405.93184 · doi:10.1016/j.jde.2018.09.038
[75] W. Rusin and V. Šverak, Minimal initial data for potential Navier-Stokes singularities, J. Funct. Anal., 260 (2011), 879-891, https://arXiv.org/abs/0911.0500. · Zbl 1206.35199
[76] J. Saal, Maximal regularity for the Stokes system on non-cylindrical space-time domains, J. Math. Soc. Japan, 58, 617-641 (2006) · Zbl 1184.35247 · doi:10.2969/jmsj/1156342030
[77] M. Santos da Rocha; M. A. Rojas-Medar; M. D. Rojas-Medar, On the existence and uniqueness of the stationary solution to equations of natural convection with boundary data in \(L^2\), R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459, 609-621 (2003) · Zbl 1047.76119 · doi:10.1098/rspa.2002.1036
[78] Y. Shibata; S. Shimizu, On the \(L^p-L^q\) maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, Asymptotic Analysis and Singularities - Hyperbolic and Dispersive PDEs and Fluid Mechanics, Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, 47, 349-362 (2007) · Zbl 1141.35344 · doi:10.2969/aspm/04710349
[79] V. A. Solonnikov, Estimates of the solutions of a nonstationary linearized system of Navier- Stokes equations, A.M.S. Translations, 75, 1-116 (1968) · Zbl 0187.03402
[80] V. A. Solonnikov, Estimates for solutions of non-stationary Navier-Stokes equations, J. Sov. Math., 8, 467-529 (1977) · Zbl 0404.35081
[81] A. E. Taylor and D. Lay, Introduction to Functional Analysis, Second edition, John Wiley & Sons, New York-Chichester-Brisbane, 1980. · Zbl 0501.46003
[82] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2. North-Holland Publishing Co., Amsterdam-New York, 1979. · Zbl 0426.35003
[83] R. Triggiani, On the stabilizability problem of Banach spaces, J. Math. Anal. Appl., 52, 383-403 (1975) · Zbl 0326.93023 · doi:10.1016/0022-247X(75)90067-0
[84] R. Triggiani, Boundary feedback stability of parabolic equations, Appl. Math. Optimiz., 6, 201-220 (1975) · Zbl 0434.35016 · doi:10.1007/BF01442895
[85] R. Triggiani, Unique Continuation of the boundary over-determined Stokes and Oseen eigenproblems, Discrete Contin. Dyn. Syst. Ser. S, 2, 645-677 (2009) · Zbl 1198.35200 · doi:10.3934/dcdss.2009.2.645
[86] R. Triggiani, Linear independence of boundary traces of eigenfunctions of elliptic and Stokes Operators and applications, Appl. Math. (Warsaw), 35, 481-512 (2008) · Zbl 1152.35420 · doi:10.4064/am35-4-6
[87] R. Triggiani, Unique continuation from an arbitrary interior subdomain of the variable-coefficient Oseen equation, Nonlinear Analysis, 71, 4967-4976 (2009) · Zbl 1181.35034 · doi:10.1016/j.na.2009.03.073
[88] R. Triggiani and X. Wan, Unique continuation properties of over-determined static Boussinesq problems with applications to uniform stabilization of dynamic Boussinesq systems, submitted.
[89] K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math., 98, 1059-1078 (1972) · Zbl 0355.58017 · doi:10.2307/2374041
[90] E. J. Villamizar-Roa; M. A. Rodríguez-Bellido; M. A. Rojas-Medar, The Boussinesq system with mixed nonsmooth boundary data, C. R. Math. Acad. Sci. Paris, 343, 191-196 (2006) · Zbl 1102.35031 · doi:10.1016/j.crma.2006.06.011
[91] W. von Whal, The Equations of Navier-Stokes and Abstract Parabolic Equations, Springer Fachmedien Wiesbaden, Vieweg+Teubner Verlag, 1985. · Zbl 1409.35168
[92] G. S. Wang, Stabilization of the Boussinesq equation via internal feedback controls, Nonlinear Analysis: Theory, Methods & Applications, 52, 485-506 (2003) · Zbl 1045.35055 · doi:10.1016/S0362-546X(02)00114-1
[93] L. Weis, A new approach to maximal \(L_p\)-regularity, Evolution Equations and Their Applications in Physical and Life Sciences, Lecture Notes in Pure and Appl. Math., Dekker, New York, 215, 195-214 (2001) · Zbl 0981.35030
[94] J. Zabczyk, Mathematical Control Theory: An Introduction, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. · Zbl 1071.93500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.