×

Group analysis of free convection flow of a magnetic nanofluid with chemical reaction. (English) Zbl 1394.76140

Summary: A theoretical study of two-dimensional magnetohydrodynamics viscous incompressible free convective boundary layer flow of an electrically conducting, chemically reacting nanofluid from a convectively heated permeable vertical surface is presented. Scaling group of transformations is used in the governing equations and the boundary conditions to determine absolute invariants. A third-order ordinary differential equation which corresponds to momentum conservation and two second-order ordinary differential equations which correspond to energy and nanoparticle volume fraction (species) conservation are derived. Our (group) analysis indicates that, for the similarity solution, the convective heat transfer coefficient and mass transfer velocity are proportional to \(x^{- 1 / 4}\) whilst the reaction rate is proportional to \(x^{- 1 / 2}\), where \(x\) is the axial distance from the leading edge of the plate. The effects of the relevant controlling parameters on the dimensionless velocity, temperature, and nanoparticle volume fraction are examined. The accuracy of the technique we have used was tested by performing comparisons with the results of published work and the results were found to be in good agreement. The present computations indicate that the flow is accelerated and temperature enhanced whereas nanoparticle volume fractions are decreased with increasing order of chemical reaction. Furthermore the flow is strongly decelerated, whereas the nanoparticle volume fraction and temperature are enhanced with increasing magnetic field parameter. Increasing convection-conduction parameter increases velocity and temperatures but has a weak influence on nanoparticle volume fraction distribution. The present study demonstrates the thermal enhancement achieved with nanofluids and also magnetic fields and is of relevance to nanomaterials processing.

MSC:

76T20 Suspensions
76W05 Magnetohydrodynamics and electrohydrodynamics
76V05 Reaction effects in flows
Full Text: DOI

References:

[1] Etemad, S. G.; Farajollahi, B.; Hajipour, M.; Thibault, J., Turbulent convective heat transfer of suspensions of Γ-AL_{2}O_{3} and cuonanoparticles (nanofluids), Journal of Enhanced Heat Transfer, 19, 3, 191-197, (2012) · doi:10.1615/jenhheattransf.2012000620
[2] Bég, O. A.; Tripathi, D., Mathematica simulation of peristaltic pumping with double-diffusive convection in nanofluids: a bio-nano-engineering model, Journal of Nanoengineering and Nanosystems, 225, 3, 99-114, (2012) · doi:10.1177/1740349912437087
[3] Bég, O. A.; Bég, T. A.; Rashidi, M. M.; Asadi, M., DTM-Padé semi numerical simulation of nanofluid transport in porous media, International Journal of Applied Mathematics and Mechanics, 9, 80-107, (2013)
[4] Rana, P.; Bhargava, R.; Bég, O. A., Numerical solution for mixed convection boundary layer flow of a nanofluid along an inclined plate embedded in a porous medium, Computers and Mathematics with Applications, 64, 9, 2816-2832, (2012) · Zbl 1268.76061 · doi:10.1016/j.camwa.2012.04.014
[5] Bég, O. A.; Bég, T. A.; Rashidi, M. M.; Asadi, M., Homotopy semi-numerical modelling of nanofluid convection boundary layers from an isothermal spherical body in a permeable regime, International Journal of Microscale and Nanoscale Thermal Fluid Transport Phenomena, 3, 237-266, (2012)
[6] Rashidi, M. M.; Bég, O. A.; Freidooni Mehr, N.; Hosseini, A.; Gorla, R. S., Homotopy simulation of axisymmetric laminar mixed convection nanofluid boundary layer flow over a vertical cylinder, Theoretical and Applied Mechanics, 39, 4, 365-390, (2012) · Zbl 1299.76058
[7] Jayaraman, K.; Anand, K. V.; Chakravarthy, S. R.; Sarathi, R., Effect of nano-aluminium in plateau-burning and catalyzed composite solid propellant combustion, Combustion and Flame, 156, 8, 1662-1673, (2009) · doi:10.1016/j.combustflame.2009.03.014
[8] Esmaeilzadeh, P.; Fakhroueian, Z.; Miran Beigi, A. A., Synthesis of biopolymeric α-lactalbumin protein nanoparticles and nanospheres as green nanofluids using in drug delivery and food technology, Journal of Nano Research, 16, 89-96, (2012) · doi:10.4028/www.scientific.net/JNanoR.16.89
[9] Muthtamilselvan, M.; Rakkiyappan, R., Mixed convection in a lid-driven square cavity filled with nanofluids, International Journal of Nanomechanics Science and Technology, 2, 4, 275-294, (2011) · doi:10.1615/nanomechanicsscitechnolintj.v2.i4.10
[10] Uddin, M. J.; Yusoff, N. H. M.; Bég, O. A.; Ismail, A. I., Lie group analysis and numerical solutions for non-Newtonian nanofluid flow in a porous medium with internal heat generation, Physica Scripta, 87, 2, (2013) · Zbl 1264.76112 · doi:10.1088/0031-8949/87/02/025401
[11] Leong, K. Y.; Saidur, R.; Kazi, S. N.; Mamun, A. H., Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator), Applied Thermal Engineering, 30, 17-18, 2685-2692, (2010) · doi:10.1016/j.applthermaleng.2010.07.019
[12] Murshed, S. M. S.; Leong, K. C.; Yang, C., Thermophysical and electrokinetic properties of nanofluids—a critical review, Applied Thermal Engineering, 28, 17-18, 2109-2125, (2008) · doi:10.1016/j.applthermaleng.2008.01.005
[13] Özerinç, S.; Kakaç, S.; Yazicioǧlu, A., Enhanced thermal conductivity of nanofluids: a state-of-the-art review, Microfluidics and Nanofluidics, 8, 2, 145-170, (2010) · doi:10.1007/s10404-009-0524-4
[14] Choi, S. U. S., Nanofluids: from vision to reality through research, Journal of Heat Transfer, 131, 3, 1-9, (2009) · doi:10.1115/1.3056479
[15] Wong, K. V.; Leon, O., Applications of nanofluids: current and future, Advances in Mechanical Engineering, 2010, (2010) · doi:10.1155/2010/519659
[16] Parekh, K.; Lee, H. S., Experimental investigation of thermal conductivity of magnetic nanofluids, AIP Conference Proceeding, 1447, 385-386, (2011)
[17] Andablo-Reyes, E.; Hidalgo-Álvarez, R.; de Vicente, J., Controlling friction using magnetic nanofluids, Soft Matter, 7, 3, 880-883, (2011) · doi:10.1039/c0sm00251h
[18] Chiang, Y.-C.; Chieh, J.-J.; Ho, C.-C., The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement, Nanoscale Research Letters, 7, article 322, (2012) · doi:10.1186/1556-276x-7-322
[19] Patel, R., Effective viscosity of magnetic nanofluids through capillaries, Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 85, 2, (2012) · doi:10.1103/physreve.85.026316
[20] Rana, P.; Bhargava, R.; Bég, O. A., Finite element simulation of unsteady magneto-hydrodynamic transport phenomena on a stretching sheet in a rotating nanofluid, Proceedings of the Institution of Mechanical Engineers. Part N: Journal of Nanoengineering and Nanosystems, 227, 2, 77-99, (2013) · doi:10.1177/1740349912463312
[21] Yadav, D.; Bhargava, R.; Agrawal, G. S., Thermal instability in a nanofluid layer with a vertical magnetic field, Journal of Engineering Mathematics, 80, 147-164, (2013) · Zbl 1367.76059 · doi:10.1007/s10665-012-9598-1
[22] Buongiorno, J., Convective transport in nanofluids, Journal of Heat Transfer, 128, 3, 240-250, (2006) · doi:10.1115/1.2150834
[23] Kuznetsov, A. V.; Nield, D. A., Natural convective boundary-layer flow of a nanofluid past a vertical plate, International Journal of Thermal Sciences, 49, 2, 243-247, (2010) · doi:10.1016/j.ijthermalsci.2009.07.015
[24] Hamad, M. A.; Pop, I.; Ismail, A. I., Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate, Nonlinear Analysis: Real World Applications, 12, 3, 1338-1346, (2011) · Zbl 1402.76155 · doi:10.1016/j.nonrwa.2010.09.014
[25] Chamkha, A. J.; Aly, A. M., MHD free convection flow of a nanofluid past a vertical plate in the presence of heat generation or absorption effects, Chemical Engineering Communications, 198, 3, 425-441, (2011) · doi:10.1080/00986445.2010.520232
[26] Aziz, A., Similarity solution for laminar thermal boundary over a flat plate with a convective boundary condition, Communication in Nonlinear Science and Numerical Simulation, 14, 1064-1068, (2009)
[27] Yao, S.; Fang, T.; Zhong, Y., Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions, Communications in Nonlinear Science and Numerical Simulation, 16, 2, 752-760, (2011) · Zbl 1221.76062 · doi:10.1016/j.cnsns.2010.05.028
[28] Makinde, O. D.; Aziz, A., Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition, International Journal of Thermal Sciences, 50, 7, 1326-1332, (2011) · doi:10.1016/j.ijthermalsci.2011.02.019
[29] Yacob, N. A.; Ishak, A.; Pop, I.; Vajravelu, K., Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid, Nanoscale Research Letters, 6, 1, 314-320, (2011) · doi:10.1186/1556-276x-6-314
[30] Uddin, M. J.; Khan, W. A.; Ismail, A. I., Free convection boundary layer flow from a heated upward facing horizontal flat plate embedded in a porous medium filled by a nanofluid with convective boundary condition, Transport in Porous Media, 92, 3, 867-881, (2012) · doi:10.1007/s11242-011-9938-z
[31] Aziz, A.; Khan, W. A., Natural convective boundary layer flow of a nanofluid past a convectively heated vertical plate, International Journal of Thermal Sciences, 52, 1, 83-90, (2012) · doi:10.1016/j.ijthermalsci.2011.10.001
[32] Chaudhary, M. A.; Merkin, J. H., A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. I. Equal diffusivities, Fluid Dynamics Research, 16, 6, 311-333, (1995) · Zbl 1052.80505 · doi:10.1016/0169-5983(95)00015-6
[33] Bég, O. A.; Rashidi, M. M.; Keimanesh, M.; Bég, T. A., Semi-numerical modelling of ‘chemically-frozen’ combusting buoyancy-driven boundary layer flow along an inclined surface, International Journal of Applied Mathematics Mechanics, 9, 1-16, (2013)
[34] Merkin, J. H.; Mahmood, T., The convective flow on a reacting surface in a porous medium, Transport in Porous Media, 33, 3, 279-293, (1998) · doi:10.1023/a:1006541819777
[35] Bég, O. A.; Bhargava, R.; Rawat, S.; Takhar, H. S.; Bég, T. A., A study of steady buoyancy-driven dissipative micropolar free convection heat and mass transfer in a Darcian porous regime with chemical reaction, Nonlinear Analysis. Modelling and Control, 12, 2, 157-180, (2007) · Zbl 1288.35467
[36] Chia, E.-S., A chemical reaction engineering perspective of polymer electrolyte membrane fuel cells [Ph.D. thesis], (2006), Princeton, NJ, USA: Chemical Engineering, Princeton University, Princeton, NJ, USA
[37] Steinfeld, S.; Palumbo, R.; Meyers, R. A., Solar thermochemical process technology, Encyclopedia of Physical Science & Technology, 15, 237-256, (2001), Academic Press
[38] Makinde, O. D.; Zimba, K.; Bég, O. A., Numerical study of chemically reacting hydromagnetic boundary layer flow with Soret/Dufour effects and a convective surface boundary condition, International Journal of Thermal and Environmental Engineering, 4, 1, 89-98, (2012) · doi:10.5383/ijtee.04.01.013
[39] Chen, L.; Xie, H.; Li, Y.; Yu, W., Nanofluids containing carbon nanotubes treated by mechanochemical reaction, Thermochimica Acta, 477, 1-2, 21-24, (2008) · doi:10.1016/j.tca.2008.08.001
[40] Ismoen, M.; Kandasamy, R.; Abdul Kahar, R., Scaling group transformation forboundary-layer flow of a nanofluid past a porous vertical stretching surface in the presence of chemical reaction with heat radiation, Computers and Fluids, 52, 15-21, (2011) · Zbl 1271.76282 · doi:10.1016/j.compfluid.2011.08.003
[41] Kameswaran, P. K.; Narayana, M.; Sibanda, P.; Murthy, P. V. S. N., Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects, International Journal of Heat and Mass Transfer, 55, 25-26, 7587-7595, (2012) · doi:10.1016/j.ijheatmasstransfer.2012.07.065
[42] Rosca, N. C.; Grosan, T.; Pop, I., Stagnation-point flow and mass transfer with chemical reaction past a permeable stretching/shrinking sheet in a nanofluid, Sains Malaysiana, 41, 10, 1271-1279, (2012)
[43] Tiwari, R. K.; Das, M. K., Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, International Journal of Heat and Mass Transfer, 50, 9-10, 2002-2018, (2007) · Zbl 1124.80371 · doi:10.1016/j.ijheatmasstransfer.2006.09.034
[44] Samanta, S.; Guha, A., Analysis of heat transfer and stability of magnetohydrodynamic natural convection above a horizontal plate with heat flux boundary condition, International Journal of Heat and Mass Transfer, 70, 793-802, (2014) · doi:10.1016/j.ijheatmasstransfer.2013.10.049
[45] Uddin, M. J.; Bég, O. A.; Amin, N., Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: a model for bio-nano-materials processing, Journal of Magnetism and Magnetic Materials, 368, 252-261, (2014) · doi:10.1016/j.jmmm.2014.05.041
[46] Khair, K. R.; Bejan, A., Mass transfer to natural convection boundary layer flow driven by heat transfer, Journal of Heat Transfer, 107, 4, 979-981, (1985) · doi:10.1115/1.3247535
[47] Ma, P. K.; Hui, W. H., Similarity solutions of the two-dimensional unsteady boundary-layer equations, Journal of Fluid Mechanics, 216, 537-559, (1990) · Zbl 0698.76038 · doi:10.1017/S0022112090000520
[48] Seshadri, R.; Na, T. Y., Group Invariance in Engineering Boundary Value Problems, (1985), New York, NY, USA: Springer, New York, NY, USA · Zbl 0566.35001 · doi:10.1007/978-1-4612-5102-6
[49] Hill, J. M., Differential Equations and Group Methods for Scientists and Engineers, (1992), Boca Raton, Fla, USA: CRC Press, Boca Raton, Fla, USA · Zbl 0847.34003
[50] White, R. E.; Subramanian, V. R., Computational Methods in Chemical Engineering with Maple, (2010), New York, NY, USA: Springer, New York, NY, USA
[51] Atalık, K., Group theoretical analysis and similarity solutions for stress boundary layers in viscoelastic flows, Journal of Non-Newtonian Fluid Mechanics, 153, 1, 62-71, (2008) · Zbl 1293.76021 · doi:10.1016/j.jnnfm.2007.12.006
[52] Grebenev, V. N.; Oberlack, M.; Grishkov, A. N., Lie algebra methods for the applications to the statistical theory of turbulence, Journal of Nonlinear Mathematical Physics, 15, 2, 227-251, (2008) · Zbl 1161.76023 · doi:10.2991/jnmp.2008.15.2.9
[53] Rashidi, M. M.; Rahimzadeh, N.; Ferdows, M.; Uddin, J.; Bég, O. A., Group theory and differential transform analysis of mixed convective heat and mass transfer from a horizontal surface with chemical reaction effects, Chemical Engineering Communications, 199, 8, 1012-1043, (2012) · doi:10.1080/00986445.2011.636850
[54] Arasu, P. P.; Loganathan, P.; Kandasamy, R.; Muhaimin, I., Lie group analysis for thermal-diffusion and diffusion-thermo effects on free convective flow over a porous stretching surface with variable stream conditions in the presence of thermophoresis particle deposition, Nonlinear Analysis. Hybrid Systems, 5, 1, 20-31, (2011) · Zbl 1371.76108 · doi:10.1016/j.nahs.2010.08.003
[55] Boutros, Y. Z.; Abd-El-Malek, M. B.; Badran, N. A.; Hassan, H. S., Lie-group method of solution for steady two-dimensional boundary-layer stagnation-point flow towards a heated stretching sheet placed in a porous medium, Meccanica, 41, 6, 681-691, (2006) · Zbl 1163.76346 · doi:10.1007/s11012-006-9014-x
[56] Mukhopadhyay, S.; Layek, G. C., Effects of variable fluid viscosity on flow past a heated stretching sheet embedded in a porous medium in presence of heat source/sink, Meccanica, 47, 4, 863-876, (2012) · Zbl 1284.76356 · doi:10.1007/s11012-011-9457-6
[57] Kandasamy, R.; Loganathan, P.; Arasu, P. P. P., Scaling group transformation for MHD boundary-layer flow of a nanofluid past a vertical stretching surface in the presence of suction/injection, Nuclear Engineering and Design, 241, 6, 2053-2059, (2011) · doi:10.1016/j.nucengdes.2011.04.011
[58] Hamad, M. A. A.; Uddin, M. J.; Ismail, A. I. M., Radiation effects on heat and mass transfer in MHD stagnation-point flow over a permeable flat plate with thermal convective surface boundary condition, temperature dependent viscosity and thermal conductivity, Nuclear Engineering and Design, 242, 194-200, (2012) · doi:10.1016/j.nucengdes.2011.09.005
[59] Ferdows, M.; Uddin, M. J.; Afify, A. A., Scaling group transformation for MHD boundary layer free convective heat and mass transfer flow past a convectively heated nonlinear radiating stretching sheet, International Journal of Heat and Mass Transfer, 56, 1-2, 181-187, (2013) · doi:10.1016/j.ijheatmasstransfer.2012.09.020
[60] Bég, O. A.; Ibragimov, M. J.; Anisimov, M. A., Numerical methods for multi-physical magnetohydrodynamics, New Developments in Hydrodynamics Research, 1-112, (2012), New York, NY, USA: Nova Science, New York, NY, USA
[61] Pantokratoras, A., A common error made in investigation of boundary layer flows, Applied Mathematical Modelling, 33, 1, 413-422, (2009) · Zbl 1167.76322 · doi:10.1016/j.apm.2007.11.009
[62] Prasher, R.; Bhattacharya, P.; Phelan, P. E., Thermal conductivity of nanoscale colloidal solutions (Nanofluids), Physical Review Letters, 94, 2, 25901-1-25901-4, (2005) · doi:10.1103/physrevlett.94.025901
[63] Bég, O. A.; Hameed, M.; Bég, T. A., Chebyshev spectral collocation simulation of nonlinear boundary value problems in electrohydrodynamics, International Journal for Computational Methods in Engineering Science and Mechanics, 14, 2, 104-115, (2013) · Zbl 07871337 · doi:10.1080/15502287.2012.698707
[64] Bég, O. A.; Zueco, J.; Bhargava, R.; Takhar, H. S., Magnetohydrodynamic convection flow from a sphere to a non-Darcian porous medium with heat generation or absorption effects: network simulation, International Journal of Thermal Sciences, 48, 5, 913-921, (2009) · doi:10.1016/j.ijthermalsci.2008.07.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.