×

Electromagnetic quasinormal modes of dyonic AdS black holes with quasitopological electromagnetism in a Horndeski gravity theory mimicking EGB gravity at \(D \to 4\). (English) Zbl 1538.83039

Summary: We investigate some properties of a black hole in a Horndeski gravity theory mimicking EGB gravity at \(D \to 4\). Borrowing ideas from quasitopological gravities provide a matter source of dyonic fields, in which the black hole solution carries two charges, electric and magnetic, in the context of the Einstein-Gauss-Bonnet (EGB) gravity. However, due to several limitations of the EGB gravity in \(D \to 4\), we consider a Horndeski gravity theory which can mimic EGB gravity in \(D \to 4\). The essential practice used in this paper is the electromagnetic quasinormal modes process, with the goal of discovering the spectrum of such an electromagnetic perturbation over the black hole spacetime. The Wentzel-Kramer-Brillouin (WKB) approximation is used to achieve the desired results. The study shows that both the charges have similar impacts on the quasinormal modes.

MSC:

83C57 Black holes
83C35 Gravitational waves
83C15 Exact solutions to problems in general relativity and gravitational theory
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C50 Electromagnetic fields in general relativity and gravitational theory

References:

[1] Hawking, S. W. and Ellis, G. F. R., The Large Scale Structure of Space-Time, , Vol. 2 (Cambridge University Press, 2011). · Zbl 0265.53054
[2] J. Natario, Relativity and singularities: A short introduction for mathematicians, preprint (2006), arXiv: math/0603190 [math.DG]. · Zbl 1391.53082
[3] Penrose, R., Gravitational collapse and space-time singularities, Phys. Rev. Lett.14 (1965) 57. · Zbl 0125.21206
[4] Event Horizon Telescope Collab. (Akiyama, K.et al.), First M87 event horizon telescope results. I. The shadow of the supermassive black hole, Astrophys. J. Lett.875 (2019) L1, arXiv:1906.11238[astro-ph.GA].
[5] Event Horizon Telescope Collab. (Akiyama, K.et al.), First M87 event horizon telescope results. VI. The shadow and mass of the central black hole, Astrophys. J. Lett.875 (2019) L6, arXiv:1906.11243[astro-ph.GA].
[6] Event Horizon Telescope Collab. (Akiyama, K.et al.), First M87 event horizon telescope results. II. Array and instrumentation, Astrophys. J. Lett.875 (2019) L2, arXiv:1906.11239[astro-ph.IM].
[7] Event Horizon Telescope Collab. (Akiyama, K.et al.), First M87 event horizon telescope results. III. Data processing and calibration, Astrophys. J. Lett.875 (2019) L3, arXiv:1906.11240[astro-ph.GA].
[8] Event Horizon Telescope Collab. (Akiyama, K.et al.), First M87 event horizon telescope results. IV. Imaging the central supermassive black hole, Astrophys. J. Lett.875 (2019) L4, arXiv:1906.11241[astro-ph.GA].
[9] Event Horizon Telescope Collab. (Akiyama, K.et al.), First M87 event horizon telescope results. V. Physical origin of the asymmetric ring, Astrophys. J. Lett.875 (2019) L5, arXiv:1906.11242[astro-ph.GA].
[10] Berti, E., Cardoso, V. and Starinets, A. O., Quasinormal modes of black holes and black branes, Class. Quantum Grav.26 (2009) 163001, arXiv:0905.2975[gr-qc]. · Zbl 1173.83001
[11] Berti, E., Cardoso, V. and Will, C. M., On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA, Phys. Rev. D73 (2006) 064030, arXiv:gr-qc/0512160.
[12] Berti, E., Yagi, K., Yang, H. and Yunes, N., Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown, Gen. Relativ. Gravit.50(5) (2018) 49, arXiv:1801.03587[gr-qc]. · Zbl 1392.83024
[13] Percival, J. and Dolan, S. R., Quasinormal modes of massive vector fields on the Kerr spacetime, Phys. Rev. D102(10) (2020) 104055.
[14] Cho, H. T., Cornell, A. S., Doukas, J., Huang, T. R. and Naylor, W., A new approach to black hole quasinormal modes: A review of the asymptotic iteration method, Adv. Math. Phys.2012 (2012) 281705. · Zbl 1251.83030
[15] Matyjasek, J. and Opala, M., Quasinormal modes of black holes: The improved semianalytic approach, Phys. Rev. D96 (2017) 024011.
[16] Schutz, B. F. and Will, C. M., Black hole normal modes: A semianalytic approach, Astrophys. J. Lett.291 (1985) L33-L36.
[17] Gogoi, D. J. and Goswami, U. D., Quasinormal modes of black holes with non-linear-electrodynamic sources in Rastall gravity, Phys. Dark Universe33 (2021) 100860.
[18] Gogoi, D. J., Karmakar, R. and Goswami, U. D., Quasinormal modes of non-linearly charged black holes surrounded by a cloud of strings in Rastall gravity, Int. J. Geom. Methods Mod. Phys.20 (2023) 2350007, arXiv:2111.00854[gr-qc]. · Zbl 1533.83081
[19] Gogoi, D. J. and Goswami, U. D., Tideless traversable wormholes surrounded by cloud of strings in \(f(R)\) gravity, J. Cosmol. Astropart. Phys.02 (2023) 027. · Zbl 1520.83019
[20] Karmakar, R., Gogoi, D. J. and Goswami, U. D., Quasinormal modes and thermodynamic properties of GUP-corrected Schwarzschild black hole surrounded by quintessence, Internat. J. Modern Phys. A37 (2022) 2250180.
[21] Graca, J. P. M. and Lobo, I. P., Scalar QNMs for higher dimensional black holes surrounded by quintessence in Rastall gravity, Eur. Phys. J. C78 (2018) 101, arXiv:1711.08714[gr-qc].
[22] Churilova, M. S., Quasinormal modes of the Dirac field in the consistent 4D Einstein-Gauss-Bonnet gravity, Phys. Dark Universe31 (2021) 100748.
[23] Ma, H., Quasinormal modes of novel 4D Einstein-Gauss-Bonnet anti-de Sitter black holes, Europhys. Lett.137(2) (2022) 29001.
[24] Gogoi, D. J. and Goswami, U. D., Quasinormal modes and Hawking radiation sparsity of GUP corrected black holes in bumblebee gravity with topological defects, J. Cosmol. Astropart. Phys.06 (2022) 029, arXiv:2203.07594[gr-qc]. · Zbl 1506.83030
[25] Nam, C. H., Non-linear charged DS black hole and its thermodynamics and phase transitions, Eur. Phys. J. C78 (2018) 418.
[26] Chandrasekhar, S., The Mathematical Theory of Black Holes (Oxford University Press, Oxford, 1992). · Zbl 0912.53053
[27] Bouhmadi-López, M., Brahma, S., Chen, C.-Y., Chen, P. and Yeom, D., A consistent model of non-singular Schwarzschild black hole in loop quantum gravity and its quasinormal modes, J. Cosmol. Astropart. Phys.07 (2020) 066, arXiv:2004.13061. · Zbl 1492.83056
[28] Liu, H. S., Mai, Z. F., Li, Y. Z. and Lu, H., Quasi-topological electromagnetism: Dark energy, dyonic black holes, stable photon spheres and hidden electromagnetic duality, Sci. China Phys. Mech. Astron.63 (2020) 240411, arXiv:1907.10876[hep-th].
[29] Cisterna, A., Giribet, G., Oliva, J. and Pallikaris, K., Quasitopological electromagnetism and black holes, Phys. Rev. D101(12) (2020) 124041, arXiv:2004.05474[hep-th].
[30] M. D. Li, H. M. Wang and S. W. Wei, Triple points and novel phase transitions of dyonic AdS black holes with quasi-topological electromagnetism, preprint (2022). arXiv: 2201.09026 [gr-qc].
[31] Dutta, S., Jain, A. and Soni, R., Dyonic black hole and holography, J. High Energy Phys.1312 (2013) 060, arXiv:1310.1748[hep-th].
[32] Hosseini Mansoori, S. A., Thermodynamic geometry of the novel 4-D Gauss-Bonnet AdS black hole, Phys. Dark Universe31 (2021) 100776, arXiv:2003.1338.
[33] Singh, D. V. and Siwach, S., Thermodynamics and P-v criticality of Bardeen-AdS black hole in 4D Einstein-Gauss-Bonnet gravity, Phys. Lett. B808 (2020) 135658, arXiv:2003.11754[gr-qc]. · Zbl 1473.83075
[34] Glavan, D. and Lin, C., Einstein-Gauss-Bonnet gravity in 4-dimensional space-time, Phys. Rev. Lett.124(8) (2020) 081301, arXiv:1905.03601.
[35] Eslam Panah, B., Jafarzade, K. and Hendi, S. H., Charged 4D Einstein-Gauss-Bonnet-AdS black holes: Shadow, energy emission, deflection angle and heat engine, Nucl. Phys. B961 (2020) 115269. · Zbl 1475.83066
[36] Fernandes, P. G. S., Charged black holes in AdS spaces in 4D Einstein Gauss-Bonnet gravity, Phys. Lett. B805 (2020) 135468. · Zbl 1436.83060
[37] Gogoi, D. J., Sekhmani, Y., Kalita, D., Gogoi, N. J. and Bora, J., Joule-Thomson expansion and optical behaviour of Reissner-Nordström-anti-de Sitter black holes in Rastall gravity surrounded by a quintessence field, Fortschr. Phys. (2023) 2300010, https://doi.org/10.1002/prop.202300010. · Zbl 07769843
[38] Cai, R.-G. and Soh, K.-S., Topological black holes in the dimensionally continued gravity, Phys. Rev. D59 (1999) 044013.
[39] Cai, R.-G., Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D65 (2002) 084014.
[40] Belhaj, A. and Sekhmani, Y., Thermodynamics of Ayón-Beato-García-AdS black holes in 4D Einstein-Gauss-Bonnet gravity, Eur. Phys. J. Plus137(2) (2022) 278. · Zbl 1496.83023
[41] Guo, M. and Li, P. C., Innermost stable circular orbit and shadow of the 4D Einstein-Gauss-Bonnet black hole, Eur. Phys. J. C80(6) (2020) 588, arXiv:2003.02523.
[42] Konoplya, R. A. and Zinhailo, A. F., Quasinormal modes, stability and shadows of a black hole in the 4D Einstein-Gauss-Bonnet gravity, Eur. Phys. J. C80(11) (2020) 1049, arXiv:2003.01188. · Zbl 1475.83075
[43] Kumar, R. and Ghosh, S. G., Rotating black holes in 4D Einstein-Gauss-Bonnet gravity and its shadow, J. Cosmol. Astropart. Phys.07 (2020) 053, https://doi.org/10.1088/1475-7516/2020/07/053, arXiv:2003.08927. · Zbl 1492.83066
[44] Belhaj, A. and Sekhmani, Y., Shadows of rotating quintessential black holes in Einstein-Gauss-Bonnet gravity with a cloud of strings, Gen. Relativ. Gravit.54(2) (2022) 17. · Zbl 1486.83062
[45] Belhaj, A. and Sekhmani, Y., Optical and thermodynamic behaviors of Ayón-Beato-García black holes for 4D Einstein Gauss-Bonnet gravity, Ann. Phys.441 (2022) 168863. · Zbl 1496.83023
[46] Born, M. and Infeld, L., Foundations of the new field theory, Proc. Roy. Soc. London A144(852) (1934) 425, https://doi.org/10.1098/rspa.1934.005. · JFM 60.0750.02
[47] Heisenberg, W. and Euler, H., Z. Phys.98 (1936) 714, arXiv:physics/0605038. · JFM 62.1002.03
[48] Bandos, I., Lechner, K., Sorokin, D. and Townsend, P. K., A non-linear duality-invariant conformal extension of Maxwell’s equations, Phys. Rev. D102 (2020) 121703, arXiv:2007.09092[hep-th].
[49] Oliva, J. and Ray, S., A new cubic theory of gravity in five dimensions: Black hole, Birkhoff’s theorem and C-function, Class. Quantum Grav.27 (2010) 225002, https://doi.org/10.1088/0264-9381/27/22/225002, arXiv:1003.4773[gr-qc]. · Zbl 1205.83058
[50] Myers, R. C. and Robinson, B., Black holes in quasi-topological gravity, J. High Energy Phys.2010 (2010) 067, https://doi.org/10.1007/JHEP08(2010)067, arXiv:1003.5357[gr-qc]. · Zbl 1291.83113
[51] Dehghani, M. H., Bazrafshan, A., Mann, R. B., Mehdizadeh, M. R., Ghanaatian, M. and Vahidinia, M. H., Black holes in quartic quasitopological gravity, Phys. Rev. D85 (2012) 104009, https://doi.org/10.1103/PhysRevD.85.104009, arXiv:1109.4708[hep-th].
[52] Li, Y. Z., Liu, H. S. and Lü, H., Quasi-topological Ricci polynomial gravities, J. High Energy Phys.2018 (2018) 166, https://doi.org/10.1007/JHEP02(2018)166, arXiv:1708.07198[hep-th]. · Zbl 1387.83066
[53] Gürses, M., Şişman, T. Ç. and Tekin, B., Is there a novel Einstein-Gauss-Bonnet theory in four dimensions?Eur. Phys. J. C80 (2020) 647.
[54] Hennigar, R. A., Kubiznak, D., Mann, R. B. and Pollack, C., On taking the \(D\to4\) limit of Gauss-Bonnet gravity: Theory and solutions, J. High Energy Phys.07 (2020) 27. · Zbl 1451.83068
[55] Arrechea, J., Delhom, A. and Jimenez-Cano, A., Inconsistencies in four-dimensional Einstein-Gauss-Bonnet gravity, Chinese Phys. C45 (2021) 013107.
[56] Lu, H. and Pang, Y., Horndeski gravity as \(D\to4\) limit of Gauss-Bonnet, Phys. Lett. B809 (2020) 135717. · Zbl 1473.83005
[57] Kobayashi, T., Effective scalar-tensor description of regularized Lovelock gravity in four dimensions, J. Cosmol. Astropart. Phys.07 (2020) 013. · Zbl 1492.83125
[58] Jusufi, K., Quasinormal modes of black holes surrounded by dark matter and their connection with the shadow radius, Phys. Rev. D101 (2020) 084055.
[59] Jusufi, K., Connection between the Shadow radius and quasinormal modes in rotating spacetimes, Phys. Rev. D101 (2020) 124063.
[60] Cuadros-Melgar, B., Fontana, R. D. B. and de Oliveira, J., Analytical correspondence between shadow radius and black hole quasinormal frequencies, Phys. Lett. B811 (2020) 135966. · Zbl 1475.83062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.