×

The isotopic field charge spin assumption. (English) Zbl 1235.81003

Summary: This paper discusses fundamental physical interactions starting from two preliminary assumptions.
(a)
Although mass of gravity and mass of inertia are equivalent quantities in their measured values, they are qualitatively not identical physical entities. We will take into consideration this difference in our equations. Then it extends this ‘equivalence-is-not-identityprinciple to sources of further fundamental interaction fields, other than gravity.
(b)
Physical interactions occur between these qualitatively different entities.
First it interprets these assumptions. Then, it sketches a picture of fundamental physical fields influenced by the distinction between the two qualitative forms of the individual field-charges and interaction between them. It applies the results of a former publication [G. Darvas, Concepts Phys. VI, No. 1, 3–16 (2009)], which mathematically proved the existence of an invariance between the two isotopic forms of field-charges. It introduces the notion of isotopic-field-charge-spin, proven as a conserved quantity. This conservation predicts the existence of a boson mediating between the two possible isotopic-field-charge-spin states. After these preliminary foundations, it formulates certain consequences in the author’s view on the physical structure of matter. Finally the paper discusses how these issues can allow an alternative interpretation of physical experience.

MSC:

81P05 General and philosophical questions in quantum theory
81Vxx Applications of quantum theory to specific physical systems

References:

[1] Araki, G., Huzinaga, S.: Recoil effect on electron-proton forces and inapplicability of energy law. Prog. Theor. Phys. 6(5), 673–683 (1951). http://ptp.ipap.jp/link?PTP/6/673 · Zbl 0044.44302 · doi:10.1143/ptp/6.5.673
[2] Belavin, A., Polyakov, A., Schwartz, A., Tyupkin, Y.: Phys. Lett. B 59, 85 (1975) · doi:10.1016/0370-2693(75)90163-X
[3] Bethe, H.: Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. (On the theory of metals. I. Eigenvalues and eigenfunctions of the linear atom chain). Z. Phys. A 71(3–4), 205–226 (1931) · JFM 57.1587.01
[4] Bethe, H.A., Bethe, H.: Enrico Fermi in Rome, 1931–1932. Phys. Today 6, 28 (2002) · doi:10.1063/1.1496372
[5] Bethe, H., Fermi, E.: Über die Wechselwirkung von zwei elektronen. Z. Phys. 77(5–6), 296–306 (1932) · Zbl 0005.09302 · doi:10.1007/BF01348919
[6] Brading, K.A.: Which symmetry? Noether, Weyl and conservation of electric charge. Stud. Hist. Philos. Mod. Phys. 33, 3–22 (2002) · Zbl 1222.01020 · doi:10.1016/S1355-2198(01)00033-8
[7] Brading, K.A., Brown, H.R.: Noether’s theorems and gauge symmetries. arXiv:hep-th/0009058v1 (2000), pp. 1–16
[8] Brading, K.A., Brown, H.R.: Symmetries and Noether’s theorems. In: Brading, K., Castellani, E. (eds.) Symmetries in Physics: Philosophical Reflections, pp. 89–109. Cambridge University Press, Cambridge (2003), 445 pp.
[9] Brading, K.A., Brown, H.R.: Are gauge symmetry transformations observable? Br. J. Philos. Sci. 55(4), 645–665 (2004) · doi:10.1093/bjps/55.4.645
[10] Breit, G.: Phys. Rev. 34, 553 (1929) · JFM 55.0527.03 · doi:10.1103/PhysRev.34.553
[11] Breit, G.: Phys. Rev. 39, 616 (1932) · Zbl 0004.03903 · doi:10.1103/PhysRev.39.616
[12] Castellani, E.: Reductionism, emergence and effective field theories. arXiv:physics/0101039v1 (2001), 18 pp. · Zbl 1222.81010
[13] Castellani, E.: Symmetry and equivalence. In: Brading, K., Castellani, E. (eds.) Symmetries in Physics: Philosophical Reflections, pp. 425–436. Cambridge University Press, Cambridge (2003), 445 pp.
[14] Castellani, E.: Dirac on gauges and constraints. Int. J. Theor. Phys. 43(6), 1503–1514 (2004) · Zbl 1174.70333 · doi:10.1023/B:IJTP.0000048634.28339.24
[15] CERN workshop, Report, arXiv:0801.1800 (2008)
[16] CERN workshop, Report, arXiv:0801.1833 (2008)
[17] CERN workshop, Report, arXiv:0801.1826 (2008)
[18] Darvas, G.: Symmetry and asymmetry in our surroundings; Aspects of symmetry in the phenomena of nature, physical laws, and human perception. In: Weibel, P. (ed.) Olafur Eliasson: Surroundings Surrounded, Essays on Space and Science, pp. 136–149. Center for Arts and Media, Karlsruhe (2001), 703 pp.
[19] Darvas, G.: Generalisation of the concept of symmetry and its classification in physics. Acta Phys. Hung. A, Heavy Ion Phys. 19(3–4), 373–379 (2004) · doi:10.1556/APH.19.2004.3-4.39
[20] Darvas, G.: Invariance, identity, equivalence. Symmetry, Cult. Sci. 17, 175–192 (2006) · Zbl 1164.00300
[21] Darvas, G.: Symmetry. Birkhäuser, Basel (2007), xi+508 p.
[22] Darvas, G.: Conserved Noether currents, Utiyama’s theory of invariant variation, and velocity dependence in local gauge invariance. Concepts Phys. VI(1), 3–16 (2009) · doi:10.2478/v10005-009-0001-6
[23] Dyson, F.: Hans Bethe and Quantum electrodynamics. Phys. Today 58(10), 48–50 (2005) · doi:10.1063/1.2138420
[24] de Broglie, L.: Note. Radiations.–Ondes et quanta. Comptes Rendus 177, 507–510 (1923)
[25] de Broglie, L.: Recherches sur la théorie des quanta. Ann. Phys. 10(III), 22–128 (1925) · JFM 51.0729.03
[26] de Haas, E.P.J.: The combination of de Broglie’s harmony of the phases and Mie’s theory of gravity results in a principle of equivalence for quantum gravity. Ann. Fond. Louis Broglie 29(4), 707–726 (2004)
[27] de Haas, E.P.J.: A renewed theory of electrodynamics in the framework of a Dirac ether. In: Proc. P.I.R.T.–IX, London, 2004, pp. 95–123. PD Publications, Liverpool (2004)
[28] de Haas, E.P.J.: From Laue’s stress-energy tensor to Maxwell’s Equations and the implications for Einstein’s GTR. In: Duffy, M.C., et al. (ed.) Proceedings of the Int. Conference ”Physical Interpretation of Relativity Theory (PIRT-05)”. Bauman Univ. Press, Moscow (2005)
[29] Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. 117(778), 610–624 (1928) · JFM 54.0973.01 · doi:10.1098/rspa.1928.0023
[30] Dirac, P.A.M.: A theory of electrons and protons. Proc. R. Soc. Lond. 126(801), 360–365 (1929) · JFM 56.0751.02
[31] Dirac, P.A.M.: A new classical theory of electrons. Proc. R. Soc. A 209, 291–296 (1951) · Zbl 0043.42801 · doi:10.1098/rspa.1951.0204
[32] Dirac, P.A.M.: Nature 168, 906–907 (1951) · doi:10.1038/168906a0
[33] Dirac, P.A.M.: An extensible model of the electron. Proc. R. Soc. A 268, 57–67 (1962) · Zbl 0111.43702 · doi:10.1098/rspa.1962.0124
[34] Einstein, A.: Zur Elektrodynamik bewegter Körper. Ann. Phys. 17, 891 (1905). English translation: on the electrodynamics of moving bodies. In: The Principle of Relativity. Methuen and Co., London (1923) · JFM 36.0920.02 · doi:10.1002/andp.19053221004
[35] Einstein, A.: Ist die Trägheit eines Körpers von seinem Energiegehalt abhängig? Ann. Phys. 18, 639 (1905). English transl.: Does the inertia of a body depend upon its energy-content? In: The Principle of Relativity. Methuen and Co., London (1923) · doi:10.1002/andp.19053231314
[36] Einstein, A.: Phys. Z. 19, 165–166 (1918)
[37] Einstein, A.: Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle? Königlich Preussische Akademie der Wissenschaften, Physikalisch-matematische Klasse, Sitsungsberichte, pp. 349–356 (1919). Translated as: Do gravitational fields play an essential part in the structure of elementary particles of matter? In: Lorentz, H.A., Einstein, A., Minkowsky, H., et al. (eds.) The Principle of Relativity, pp. 189–198. Dover (1923)
[38] Einstein, A.: A brief outline of the development of the theory of relativity. Nature 106(2677), 782–784 (1921) · doi:10.1038/106782a0
[39] Einstein, A.: Elementary derivation of the equivalence of mass and energy. Bull. Am. Math. Soc. 41, 223–230 (1935) · JFM 61.0852.02 · doi:10.1090/S0002-9904-1935-06046-X
[40] Fermi, E.: Rev. Mod. Phys. 4, 87 (1932) · Zbl 0003.41503 · doi:10.1103/RevModPhys.4.87
[41] Feynman, R.P.: Space-time approach to quantum electrodynamics. Phys. Rev. 76(6), 769–789 (1949) · Zbl 0038.13302 · doi:10.1103/PhysRev.76.769
[42] Gell-Mann, M., Ne’eman, Y.: The Eightfold Way. Benjamin, Elmsford (1964). Re-published by Westview Press (2000), 336 pp.
[43] Gershon, T.: Quantum loop effects. Phys. World, June 22–25 (2008). http://lhcb-public.web.cern.ch/lhcb/Hot%20News/Articles/PWJun08gershon.pdf
[44] Glashow, Sh.L., Weinberg, S.: Natural conservation laws for neutral currents. Phys. Rev. D 15, 1958–1965 (1977) · doi:10.1103/PhysRevD.15.1958
[45] Goldstone, J.: Nuovo Cimento 19, 154 (1961) · Zbl 0099.23006 · doi:10.1007/BF02812722
[46] Goldstone, J., Salam, A., Weinberg, S.: Broken symmetries. Phys. Rev. 127(3), 965–970 (1962) · Zbl 0106.20601 · doi:10.1103/PhysRev.127.965
[47] Higgs, P.W.: Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13(16), 508–509 (1964) · doi:10.1103/PhysRevLett.13.508
[48] Higgs, P.W.: Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156–1162 (1966) · doi:10.1103/PhysRev.145.1156
[49] Horváth, D.: The deepest symmetries of nature: CPT and SUSY. Invited paper presented at Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, Wako, Japan, 14–16 March (2005). http://www.kfki.hu/\(\sim\)horvath/RIPNP-GRID/Publications/2005/HD_RikenCPT05paper.pdf
[50] Horváth, D.: Symmetries and their violation in particle physics. Symmetry, Cult. Sci. 17(1–2), 159–174 (2006)
[51] Hraskó, P.: Ekvivalens-e egymással a tömeg és az energia? [Are mass and energy equivalent?]. Fiz. Szle. 53(9), 330 (2003)
[52] Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill, New York (1980) · Zbl 0453.05035
[53] Jackiw, R., Rebbi, C.: Conformal properties of Yang-Mills pseudoparticle. Phys. Rev. D 14(2), 517–523 (1976) · doi:10.1103/PhysRevD.14.517
[54] Martin, C.A.: On continuous symmetries and the foundations of modern physics. In: Brading, K., Castellani, E. (eds.) Symmetries in Physics: Philosophical Reflections, pp. 29–60. Cambridge University Press, Cambridge (2003), 445 pp.
[55] Mie, G.: Ann. Phys. 39, 1–40 (1912)
[56] Mie, G.: Grundlagen einer Theorie der Materie. Ann. Phys. 37, 511–534 (1912) · JFM 43.0910.04 · doi:10.1002/andp.19123420306
[57] Mie, G.: Ann. Phys. 40, 1–66 (1913)
[58] Mills, R.: Gauge fields. Am. J. Phys. 57(6), 493–507 (1989) · doi:10.1119/1.15984
[59] Møller, C.: Über den Stoß zweier Teilchen unter Berücksichtigung der Retardation der Kräfte. Z. Phys. 70(11–12), 786–795 (1931) · JFM 57.1231.27 · doi:10.1007/BF01340621
[60] Ne’eman, Y.: The interplay of symmetry, order and information in physics and the impact of gauge symmetry on algebraic topology. Symmetry, Cult. Sci. 1(3), 229–255 (1990) · Zbl 0876.00026
[61] Ne’eman, Y., Kirsh, Y.: The Particle Hunters. Cambridge University Press, Cambridge (1986), 272 pp.
[62] Noether, E.A.: Invariante Variationsprobleme. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen: Mathematisch-physikalische Klasse, pp. 235–257 (1918) · JFM 46.0770.01
[63] Norton, J.D.: General covariance, gauge theories and the Kretschmann Objection. In: Brading, K., Castellani, E. (eds.) Symmetries in Physics: Philosophical Reflections, pp. 110–123. Cambridge University Press, Cambridge (2003), 445 pp.
[64] Pauli, W.: Relativistic field theories. Rev. Mod. Phys. 13, 203–232 (1941) · JFM 67.1125.03 · doi:10.1103/RevModPhys.13.203
[65] Pons, J.M., Salisbury, D.C., Shepley, L.C.: Gauge transformations in Einstein-Yang-Mills theories. J. Math. Phys. (1999, submitted). arXiv:gr-qc/9912086v1 · Zbl 0977.83005
[66] Rosen, J.: Symmetry in Science, An Introduction to the General Theory. Springer, Berlin (1995), 213 pp. · Zbl 0841.20001
[67] Rosen, J.: Symmetry Rules, How Science and Nature Are founded on Symmetry. The Frontiers Collection. Springer, Berlin (2008), 304 pp. · Zbl 1180.00004
[68] Ruffini, R., Vereshchagin, G., Xue, S.-S.: Electron–positron pairs in physics and astrophysics: from heavy nuclei to black holes. Phys. Rep. 487(1–4), 1–140 (2010) · doi:10.1016/j.physrep.2009.10.004
[69] Salpeter, E.E., Bethe, H.A.: A relativistic equation for bound-state problems. Phys. Rev. 84(6), 1232–1242 (1951) · Zbl 0044.43103 · doi:10.1103/PhysRev.84.1232
[70] Schweber, S.S.: Enrico Fermi and quantum electrodynamics, 1929–1932. Phys. Today 6, 31 (2002) · doi:10.1063/1.1496373
[71] ’t Hooft, G.: Introduction to General Relativity. Rinton Press, Princeton (2002) · Zbl 1008.83001
[72] ’t Hooft, G.: The conceptual basis of quantum field theory. In: Handbook of the Philosophy of Science. Elsevier, Amsterdam (2005)
[73] The Belle Collaboration: Difference in direct charge-parity violation between charged and neutral B meson decays. Nature 452, 332–335 (2008). doi: 10.1038/nature06827 · doi:10.1038/nature06827
[74] Utiyama, R.: Invariant theoretical interpretation of interaction. Phys. Rev. 101(5), 1597–1607 (1956) · Zbl 0070.22102 · doi:10.1103/PhysRev.101.1597
[75] Utiyama, R.: Theory of invariant variation and the generalised canonical dynamics. Prog. Theor. Phys. Suppl. 9, 19–44 (1959) · Zbl 0088.21903 · doi:10.1143/PTPS.9.19
[76] von Laue, M.: Ann. Phys. 35, 524–542 (1911)
[77] von Laue, M.: Relativitätstheorie, 6th edn. Braunschweig (1955) · Zbl 0068.21601
[78] Weinberg, S.: A model of leptons. Phys. Rev. Lett. 19(21), 1264–1266 (1967) · doi:10.1103/PhysRevLett.19.1264
[79] Weinberg, S.: General theory of broken symmetries. Phys. Rev. D 7, 1068–1082 (1973) · doi:10.1103/PhysRevD.7.1068
[80] Weinberg, S.: Unified theory of weak and electromagnetic interactions (Nobel lecture). Rev. Mod. Phys. 52(3), 315 (1980) · Zbl 1225.81153 · doi:10.1103/RevModPhys.52.515
[81] Weinberg, S.: Foundations. The Quantum Theory of Fields, vol. I. Cambridge University Press, Cambridge (1995)
[82] Weinberg, S.: Modern Applications. The Quantum Theory of Fields, vol. II. Cambridge University Press, Cambridge (1996). Chap. 15. Non-Abelian gauge theories
[83] Weinberg, S.: Changing attitudes and the standard model. In: Hoddeson, L., Brown, L., Riordan, M., Dresden, M. (eds.) The Rise of the Standard Model, pp. 36–44. Cambridge University Press, Cambridge (1997)
[84] Weyl, H.: Gravitation und Elektrizität. Sitzungsberichte Preussische Akademie der Wissenschaften, pp. 465–480 (1918) · JFM 46.1300.01
[85] Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover, New York (1928) · Zbl 0041.56804
[86] Weyl, H.: Electron and gravitation. In: O’Raifeartaigh (ed.) The Dawning of Gauge Theory. Princeton Univ. Press, Princeton (1929) · JFM 55.0513.05
[87] Weyl, H.: Philosophy of Mathematics and Natural Science, pp. 170–180. Princeton University Press, Princeton (1949). With a new introduction by F. Wilczek (2009), 315 pp. · Zbl 0033.24209
[88] Wigner, E.P.: Events, laws of nature and invariance principles. In: Wigner (ed.) Symmetries and Reflections, pp. 38–50. Indiana University Press, Bloomington (1967)
[89] Wigner, E.P.: The meaning of symmetry. In: Zichichi, A. (ed.) Gauge Interactions Theory and Experiment, Proceedings of the 20th International School of Subnuclear Physics, Erice, Sicily, pp. 729–733. Plenum, New York (1984)
[90] Wilczek, F.: Riemann-Einstein structure from volume and gauge symmetry, IASSNS-HEP-97/142. (1998). arXiv:hep-th/9801184v4
[91] Wilczek, F.: The origin of mass. MIT Phys. Annu. 2003, 24–35 (2003)
[92] Wilczek, F.: Particle physics: mass by numbers. Nature 456, 449–450 (2008). doi: 10.1038/456449a · doi:10.1038/456449a
[93] Yang, C.N., Mills, R.L.: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96(1), 191–195 (1954) · Zbl 1378.81075 · doi:10.1103/PhysRev.96.191
[94] Zee, A.: Fearful Symmetry, Princeton University Press, Princeton (1999), 336 pp., extended edn.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.