×

High accurate modified WENO method for the solution of Black-Scholes equation. (English) Zbl 1314.91238

Summary: In this paper, we propose a high accurate method based on non-standard Runge-Kutta (NRK), modified weighted essentially non-oscillatory (MWENO) and grid stretching methods to solve the Black-Scholes equation with discontinuous final condition. For the spatial and temporal discretization of the Black-Scholes equation, the MWENO method and the NRK method are applied, respectively. The MWENO method is a high-order method that prevents the appearance of spurious solutions close to non-smooth points. To achieve the high-order accuracy in non-smooth points as well as smooth points, a grid stretching technique is employed. The accuracy analysis and the CFL stability condition of this hybrid method are presented. The high efficiency of this method for the solution of nonlinear Black-Scholes equation is demonstrated numerically. Comparisons are made with the available methods in the literature.

MSC:

91G60 Numerical methods (including Monte Carlo methods)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35A35 Theoretical approximation in context of PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
91G20 Derivative securities (option pricing, hedging, etc.)
Full Text: DOI

References:

[1] Wilmott P, Howison S, Dewynne J (2002) The Mathematics of financial derivatives. A student introduction. Cambridge University Press, Cambridge · Zbl 0842.90008
[2] Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81:637-654 · Zbl 1092.91524 · doi:10.1086/260062
[3] Merton RC (1973) Theory of rational option pricing. Bell J Econ 4:141-183 · Zbl 1257.91043 · doi:10.2307/3003143
[4] Forsyth P, Vetzal K, Zvan R (1999) A finite element approach to the pricing of discrete lookbacks with stochastic volatility. Appl Math Finance 6:87-106 · Zbl 1009.91030 · doi:10.1080/135048699334564
[5] Kluge T (2002) Pricing derivatives in stochastic volatility models using the finite difference method. Dipl. thesis, TU Chemnitz
[6] Company R, Navarro E, Pintos JP, Ponsoda E (2008) Numerical solution of linear and nonlinear Black-Scholes option pricing equations. Comput. Math. Appl. 56:813-821 · Zbl 1155.65370 · doi:10.1016/j.camwa.2008.02.010
[7] Company R, Jodar L, Pintos J (2012) A consistent stable numerical scheme for a nonlinear option pricing model in illiquid markets. Math. Comput. Simul. 82:1972-1985 · Zbl 1262.91146 · doi:10.1016/j.matcom.2010.04.026
[8] Ankudinova J, Ehrhardt M (2008) On the numerical solution of nonlinear Black-Scholes equations. Comput. Math. Appl. 56:799-812 · Zbl 1155.65367
[9] Tangman DY, Gopau A, Bhuruth M (2008) Numerical pricing of options using high-order compact finite difference schemes. J. Comput Appl Math 218:270-280 · Zbl 1146.91338 · doi:10.1016/j.cam.2007.01.035
[10] Dremkova E, Ehrhardt M (2011) A high-order compact method for nonlinear Black-Scholes option pricing equations of American options. Int J Comput Math 88:2782-2797 · Zbl 1237.91228 · doi:10.1080/00207160.2011.558574
[11] Bohner M, Zheng Y (2009) On analytical solutions of the Black-Scholes equation. Appl Math Lett 22:309-313 · Zbl 1159.91014 · doi:10.1016/j.aml.2008.04.002
[12] Oosterlee CW, Frisch JC, Gaspar FJ (2004) TVD, WENO and blended BDF discretizations for Asian options. Comput Visual Sci 6:131-138 · Zbl 1079.91039 · doi:10.1007/s00791-003-0117-9
[13] Hajipour M, Malek A (2012) High accurate NRK and MWENO scheme for nonlinear degenerate parabolic PDEs. Appl Math Model 36:4439-4451 · Zbl 1252.65166 · doi:10.1016/j.apm.2011.11.069
[14] Hajipour M, Malek A (2011) An efficient high order modified WENO scheme for nonlinear parabolic equations. Int J Appl Math 24:443-458 · Zbl 1233.65056
[15] Liu Y-Y, Shu C-W, Zhang M (2011) High order finite difference WENO schemes for nonlinear degenerate parabolic equations. SIAM J Sci Comput 33:939-965 · Zbl 1227.65074 · doi:10.1137/100791002
[16] Liu X-D, Osher S, Chan T (1994) Weighted essentially non-oscillatory schemes. J Comput Phys 115:200-212 · Zbl 0811.65076 · doi:10.1006/jcph.1994.1187
[17] Jiang G, Shu C-W (1996) Efficient implementation of weighted ENO schemes. J Comput Phys 126:202-228 · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[18] Balsara D, Shu C-W (2000) Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J Comput Phys 160:405-452 · Zbl 0961.65078 · doi:10.1006/jcph.2000.6443
[19] Hidalgo A, Dumbser M (2011) ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations. J Sci Comput 48:173-189 · Zbl 1221.65231 · doi:10.1007/s10915-010-9426-6
[20] Shu C-W (2009) High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Rev 51(1):82-126 · Zbl 1160.65330 · doi:10.1137/070679065
[21] Pedro JC, Banda MK, Sibanda P (2013) On one-dimensional arbitrary high-order WENO schemes for systems of hyperbolic conservation laws. Comput Appl Math. doi:10.1007/s40314-013-0066-y · Zbl 1307.65116
[22] Jandačka M, Ševčovič D (2005) On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile. J Appl Math 2005(3):235-258 · Zbl 1128.91025 · doi:10.1155/JAM.2005.235
[23] Leland HE (1985) Option pricing and replication with transactions costs. J Finance 40:1283-1301 · doi:10.1111/j.1540-6261.1985.tb02383.x
[24] Barles G, Soner HM (1998) Option pricing with transaction costs and a nonlinear Black-Scholes equation. Finance Stoch 2:369-397 · Zbl 0915.35051 · doi:10.1007/s007800050046
[25] Dormand JR, Prince PJ (1980) A family of embedded Runge-Kutta formulae. J Comput Appl Math 6:19-26 · Zbl 0448.65045 · doi:10.1016/0771-050X(80)90013-3
[26] Wang R, Spiteri RJ (2007) Linear instability of the fifth-order WENO method. SIAM J Numer Anal 45(5):1871-1901 · Zbl 1158.65065 · doi:10.1137/050637868
[27] Chen B, Solis F (1998) Discretizations of nonlinear differential equations using explicit finite order methods. J Comput Appl Math 90:171-183 · Zbl 0940.65074 · doi:10.1016/S0377-0427(98)00017-X
[28] Mickens RE (1994) Nonstandard finite difference models of differential equations. World Scientific, Singapore · Zbl 0810.65083
[29] Carpenter MH, Gottlieb D, Abarbanel S, Don W-S (1995) The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: a study of the boundary error. SIAM J Sci Comput 16:1241-1252 · Zbl 0839.65098 · doi:10.1137/0916072
[30] Oosterlee CW, Leentvaar CCW, Huang X (2005) Accurate American option pricing by grid stretching and high-order finite differences, Working papers. Delft University of Technology, the Netherlands, DIAM
[31] Hull JC (1989) Options, futures and other derivatives. Prentice-Hall Int. Inc, London
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.