×

Homotopy perturbation method for fractional Black-Scholes European option pricing equations using Sumudu transform. (English) Zbl 1299.91179

Summary: The homotopy perturbation method, Sumudu transform, and He’s polynomials are combined to obtain the solution of fractional Black-Scholes equation. The fractional derivative is considered in Caputo sense. Further, the same equation is solved by homotopy Laplace transform perturbation method. The results obtained by the two methods are in agreement. The approximate analytical solution of Black-Scholes is calculated in the form of a convergence power series with easily computable components. Some illustrative examples are presented to explain the efficiency and simplicity of the proposed method.

MSC:

91G80 Financial applications of other theories
35Q91 PDEs in connection with game theory, economics, social and behavioral sciences
91G20 Derivative securities (option pricing, hedging, etc.)
35R11 Fractional partial differential equations
35C10 Series solutions to PDEs
Full Text: DOI

References:

[1] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 1056.93542 · doi:10.1109/9.739144
[2] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, Amsterdam, The Netherlands, 2006. · Zbl 1206.26007 · doi:10.1016/S0304-0208(06)80001-0
[3] V. Lakshmikantham, S. Leela, and J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific, Cambridge, UK, 2009. · Zbl 1188.37002
[4] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, Singapore, 2012. · Zbl 1248.26011 · doi:10.1142/9789814355216
[5] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience; John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0789.26002
[6] R. Metzler, W. Schick, H. G. Kilian, and T. F. Nonnenmacher, “Relaxation in filled polymers: a fractional calculus approach,” The Journal of Chemical Physics, vol. 103, no. 16, pp. 7180-7186, 1995. · doi:10.1063/1.470346
[7] H. Beyer and S. Kempfle, “Definition of physically consistent damping laws with fractional derivatives,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 75, no. 8, pp. 623-635, 1995. · Zbl 0865.70014 · doi:10.1002/zamm.19950750820
[8] L. Debnath, “Fractional integral and fractional differential equations in fluid mechanics,” Fractional Calculus & Applied Analysis, vol. 6, no. 2, pp. 119-155, 2003. · Zbl 1076.35095
[9] K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, vol. 111 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1974, with an annotated chronological bibliography by Bertram Ross. · Zbl 0292.26011
[10] M. Bohner and Y. Zheng, “On analytical solutions of the Black-Scholes equation,” Applied Mathematics Letters, vol. 22, no. 3, pp. 309-313, 2009. · Zbl 1159.91014 · doi:10.1016/j.aml.2008.04.002
[11] R. Company, E. Navarro, J. R. Pintos, and E. Ponsoda, “Numerical solution of linear and nonlinear Black-Scholes option pricing equations,” Computers & Mathematics with Applications, vol. 56, no. 3, pp. 813-821, 2008. · Zbl 1155.65370 · doi:10.1016/j.camwa.2008.02.010
[12] Z. Cen and A. Le, “A robust and accurate finite difference method for a generalized Black-Scholes equation,” Journal of Computational and Applied Mathematics, vol. 235, no. 13, pp. 3728-2733, 2011. · Zbl 1214.91130 · doi:10.1016/j.cam.2011.01.018
[13] J. Ankudinova and M. Ehrhardt, “On the numerical solution of nonlinear Black-Scholes equations,” Computers & Mathematics with Applications, vol. 56, no. 3, pp. 799-812, 2008. · Zbl 1155.65367 · doi:10.1016/j.camwa.2008.02.005
[14] V. Gülka\cc, “The homotopy perturbation method for the Black-Scholes equation,” Journal of Statistical Computation and Simulation, vol. 80, no. 12, pp. 1349-1354, 2010. · Zbl 1233.91274 · doi:10.1080/00949650903074603
[15] J.-H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257-262, 1999. · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[16] J.-H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37-43, 2000. · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[17] J.-H. He, “Some asymptotic methods for strongly nonlinear equations,” International Journal of Modern Physics B, vol. 20, no. 10, pp. 1141-1199, 2006. · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[18] J.-H. He, “The homotopy perturbation method nonlinear oscillators with discontinuities,” Applied Mathematics and Computation, vol. 151, no. 1, pp. 287-292, 2004. · Zbl 1039.65052 · doi:10.1016/S0096-3003(03)00341-2
[19] J. H. He, “Application of homotopy perturbation method to nonlinear wave equations,” Chaos, Solitons and Fractals, vol. 26, no. 3, pp. 695-700, 2005. · Zbl 1072.35502 · doi:10.1016/j.chaos.2005.03.006
[20] S. Momani and Z. Odibat, “Homotopy perturbation method for nonlinear partial differential equations of fractional order,” Physics Letters A, vol. 365, no. 5-6, pp. 345-350, 2007. · Zbl 1203.65212 · doi:10.1016/j.physleta.2007.01.046
[21] A. A. Elbeleze, A. Kılı\ccman, and B. M. Taib, “Application of homotopy perturbuation and variational iteration method for Fredholm integro-differential equation of fractional ordef,” Abstract & Applied Analysis, vol. 2012, Article ID 763139, 14 pages, 2012. · Zbl 1253.65201 · doi:10.1155/2012/763139
[22] H. Jafari and C. M. Khalique, “Homotopy perturbation and variational iteration methods for solving fuzzy differential equations,” Communications in Fractional Calculus, vol. 3, pp. 38-48, 2012.
[23] Y. M. Qin and D. Q. Zeng, “Homotopy perturbation method for the q-diffusion equation with a source term,” Communications in Fractional Calculus, vol. 3, no. 1, pp. 34-37, 2012.
[24] M. Gorji, D. D. Ganji, and S. Soleimani, “New application of He’s homotopy perturbation method,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 3, pp. 319-328, 2007.
[25] M. Madani, M. Fathizadeh, Y. Khan, and A. Yildirim, “On the coupling of the homotopy perturbation method and Laplace transformation,” Mathematical and Computer Modelling, vol. 53, no. 9-10, pp. 1937-1945, 2011. · Zbl 1219.65121 · doi:10.1016/j.mcm.2011.01.023
[26] S. Kumar, A. Yildirim, Y. Khan, H. Jafari, K. Sayevand, and L. Wei, “Analytical solution of fractional Black-Scholes European option pricing equation by using Laplace transform,” Journal of Fractional Calculus and Applications, vol. 2, no. 8, pp. 1-9, 2012.
[27] M. Javidi and M. A. Raji, “Combination of Laplace transform and homotopy perturbation method to solve the parabolic partial differential equations,” Communications in Fractional Calculus, vol. 3, pp. 10-19, 2012.
[28] J. Singh, D. Kumar, and Sushila, “Homotopy perturbation Sumudu transform method for nonlinear equations,” Advances in Applied Mathematics and Mechanics, vol. 4, pp. 165-175, 2011. · Zbl 1247.76062
[29] J. Singh, D. Kumar, and A. Kili\ccman, “Homotopy perturbation method for fractional gas dynamics equation using Sumudu transform,” Abstract and Applied Analysis, vol. 2013, Article ID 934060, 8 pages, 2013. · Zbl 1262.76082 · doi:10.1155/2013/934060
[30] G. K. Watugala, “Sumudu transform-a new integral transform to solve differential equations and control engineering problems,” Mathematical Engineering in Industry, vol. 6, no. 4, pp. 319-329, 1998. · Zbl 0916.44002
[31] M. A. A\csiru, “Further properties of the Sumudu transform and its applications,” International Journal of Mathematical Education in Science and Technology, vol. 33, no. 3, pp. 441-449, 2002. · Zbl 1013.44001 · doi:10.1080/002073902760047940
[32] F. B. M. Belgacem, A. A. Karaballi, and S. L. Kalla, “Analytical investigations of the Sumudu transform and applications to integral production equations,” Mathematical Problems in Engineering, no. 3-4, pp. 103-118, 2003. · Zbl 1068.44001 · doi:10.1155/S1024123X03207018
[33] H. Eltayeb, A. Kılı\ccman, and B. Fisher, “A new integral transform and associated distributions,” Integral Transforms and Special Functions, vol. 21, no. 5-6, pp. 367-379, 2010. · Zbl 1191.35017 · doi:10.1080/10652460903335061
[34] A. Kılı\ccman, V. G. Gupta, and B. Sharma, “On the solution of fractional Maxwell equations by Sumudu transform,” Journal of Mathematics Research, vol. 2, no. 4, pp. 147-151, 2010. · Zbl 1208.35163
[35] A. Kılı\ccman and H. Eltayeb, “A note on integral transforms and partial differential equations,” Applied Mathematical Sciences, vol. 4, no. 6, pp. 109-118, 2010. · Zbl 1194.35017
[36] M. A. Asiru, “Sumudu transform and the solution of integral equations of convolution type,” International Journal of Mathematical Education in Science and Technology, vol. 32, no. 6, pp. 906-910, 2001. · Zbl 1008.45003 · doi:10.1080/002073901317147870
[37] A. Kadem, “Solving the one-dimensional neutron transport equation using Chebyshev polynomials and the Sumudu transform,” Analele Universitatiidin Oradea. Fascicola Matematica, vol. 12, pp. 153-171, 2005. · Zbl 1164.82331
[38] A. Kılı\ccman and H. E. Gadain, “On the applications of Laplace and Sumudu transforms,” Journal of the Franklin Institute, vol. 347, no. 5, pp. 848-862, 2010. · Zbl 1286.35185 · doi:10.1016/j.jfranklin.2010.03.008
[39] A. Kili\ccman, H. Eltayeb, and R. P. Agarwal, “On Sumudu transform and system of differential equations,” Abstract and Applied Analysis, vol. 2010, Article ID 598702, 11 pages, 2010. · Zbl 1197.34001 · doi:10.1155/2010/598702
[40] V. B. L. Chaurasia and J. Singh, “Application of Sumudu transform in Schödinger equation occurring in quantum mechanics,” Applied Mathematical Sciences, vol. 4, no. 57-60, pp. 2843-2850, 2010. · Zbl 1218.33005
[41] S. J. Liao, “An approximate solution technique not depending on small parameters: a special example,” International Journal of Non-Linear Mechanics, vol. 30, no. 3, pp. 371-380, 1995. · Zbl 0837.76073 · doi:10.1016/0020-7462(94)00054-E
[42] S. J. Liao, “Boundary element method for general nonlinear differential operator,” Engineering Analysis with Boundary Elements, vol. 20, no. 2, pp. 91-99, 1997. · doi:10.1016/S0955-7997(97)00043-X
[43] J.-H. He, “Asymptotic methods for solitary solutions and compactons,” Abstract and Applied Analysis, vol. 2012, Article ID 916793, 130 pages, 2012. · Zbl 1257.35158 · doi:10.1155/2012/916793
[44] A. Ghorbani and J. S. Nadjfi, “He’s homotopy perturbation method for calculating Adomian’s polynomials,” The International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 2, pp. 229-332, 2007.
[45] A. Ghorbani, “Beyond Adomian polynomials: he polynomials,” Chaos, Solitons and Fractals, vol. 39, no. 3, pp. 1486-1492, 2009. · Zbl 1197.65061 · doi:10.1016/j.chaos.2007.06.034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.