×

Memory-based event-triggered fault-tolerant load frequency control of multi-area power systems with electric vehicles. (English) Zbl 07834546

Summary: This paper focuses on the fault-tolerant load frequency control problem for a multi-area power system with electric vehicles, specifically addressing sensor failures. Electric vehicles are utilized for load frequency control, and a multi-area power system model is established while considering parameter uncertainty. To minimize network data transmission, a memory-based adaptive hybrid event-triggered mechanism is designed, utilizing historical data to construct a threshold function. In addition, both the system states as well as the faults are estimated using a sliding mode observer. The proposed fault-tolerant load frequency control scheme uses observers to mitigate the impact of sensor failures. By applying Lyapunov stability theory, sufficient conditions are derived for the stability of the multi-area power system. Finally, simulations are provided to demonstrate the validity of the proposed schemes.

MSC:

93C40 Adaptive control/observation systems
93B36 \(H^\infty\)-control
93C95 Application models in control theory
Full Text: DOI

References:

[1] Prakash, M.; Hoon, J. Y., Fuzzy logic-based integral sliding mode control of multi-area power systems integrated with wind farms, Inf. Sci., 545, 153-169, 2021 · Zbl 1478.93352
[2] Yan, S.; Gu, Z.; Park, J. H., Memory-event-triggered \(H_\infty\) load frequency control of multi-area power systems with cyber-attacks and communication delays, IEEE Trans. Netw. Sci. Eng., 8, 2, 1571-1583, 2021
[3] Zhong, Q.; Yang, J.; Shi, K.; Zhong, S.; Li, Z.; Sotelo, M. A., Event-triggered \(H_\infty\) load frequency control for multi-area nonlinear power systems based on non-fragile proportional integral control strategy, IEEE Trans. Intell. Transp. Syst., 23, 8, 12191-12201, 2022
[4] Wang, D.; Chen, F.; Meng, B.; Hu, X.; Wang, J., Event-based secure \(H_\infty\) load frequency control for delayed power systems subject to deception attacks, Appl. Math. Comput., 394, 125788-125801, 2021 · Zbl 1508.93089
[5] Li, B.; Hu, S.; Zhong, Q.; Shi, K.; Zhong, S., Dynamic memory event-triggered proportional-integral-based \(H_\infty\) load frequency control for multi-area wind power systems, Appl. Math. Comput., 435, 128070-128083, 2023 · Zbl 07702358
[6] Ye, J.; Yu, X., Detection and estimation of false data injection attacks for load frequency control systems, J. Mod. Power Syst. Clean Energy, 10, 4, 861-870, 2022
[7] Ameli, A.; Hooshyar, A.; El-Saadany, E. F.; Youssef, A. M., Attack detection and identification for automatic generation control systems, IEEE Trans. Power Syst., 33, 5, 4760-4774, 2018
[8] Arunagirinathan, S.; Muthukumar, P.; Joo, Y. H., Robust reliable \(H_\infty\) control design for networked control systems with nonlinear actuator faults and randomly missing measurements, Int. J. Robust Nonlinear Control, 29, 12, 4168-4190, 2019 · Zbl 1426.93078
[9] Ma, R. J.; Shi, P.; Wu, L.g., Sparse false injection attacks reconstruction via descriptor sliding mode observers, IEEE Trans. Autom. Control, 66, 11, 5369-5376, 2020 · Zbl 1536.93332
[10] Yang, H. Y.; Jiang, Y. C.; Shen, Y., Fault-tolerant control of time-delay Markov jump systems with \(I t \hat{o}\) stochastic process and output disturbance based on sliding mode observer, IEEE Trans. Ind. Inform., 14, 12, 5299-5307, 2018
[11] Surjagade, P. V.; Deng, J.; Shimjith, S. R.; Arul, A. J., Descriptor sliding mode observer based fault tolerant control for nuclear power plant with actuator and sensor faults, Prog. Nucl. Energy, 162, 10744-10755, 2023
[12] Su, X.; Liu, X.; Song, Y. D., Fault-tolerant control of multiarea power systems via a sliding-mode observer technique, IEEE/ASME Trans. Mechatron., 23, 1, 38-47, 2018
[13] Wang, Y.; Zhao, J., Periodic event-triggered sliding mode control for switched uncertain T-S fuzzy systems with a logistic adaptive event-triggering scheme, IEEE Trans. Fuzzy Syst., 30, 10, 4115-4126, 2022
[14] Xie, L.; Cheng, J.; Zou, Y.; Wu, Z. G.; Yan, H., A dynamic-memory event-triggered protocol to multiarea power systems with semi-Markov jumping parameter, IEEE Trans. Cybern., 53, 10, 6577-6587, 2023
[15] Wang, X.; Park, J. H.; Liu, Z.; Yang, H., Dynamic event-triggered control for GSES of memristive neural networks under multiple cyber-attacks, IEEE Trans. Neural Netw. Learn. Syst., 2022
[16] Wang, X.; Feng, G., Dynamic event-triggered \(H_\infty\) filtering for NCSs under multiple cyber-attacks, IEEE Trans. Syst. Man Cybern. Syst., 53, 8, 4705-4714, 2023
[17] Shen, H.; Xia, Y.; Wang, J.; Park, J. H., Fault-tolerant event-triggered \(H_\infty\) load frequency control for multiarea power systems with communication delay, IEEE Syst. J., 16, 4, 6624-6634, 2022
[18] Kaneba, C. M.; Mu, X.; Li, X.; Wu, X., Event triggered control for fault tolerant control system with actuator failure and randomly occurring parameter uncertainty, Appl. Math. Comput., 415, 126714-126725, 2022 · Zbl 1510.93289
[19] Ni, Y.; Wang, Z.; Fan, Y.; Huang, X.; Shen, H., Memory-based event-triggered control for global synchronization of chaotic Lur’e systems and its application, IEEE Trans. Syst. Man Cybern. Syst., 53, 3, 1920-1931, 2023
[20] Liu, J.; Wang, Y.; Cao, J.; Yue, D.; Xie, X., Secure adaptive-event-triggered filter design with input constraint and hybrid cyber attack, IEEE Trans. Cybern., 51, 8, 4000-4010, 2021
[21] Liu, L.; Cui, Y.; Liu, Y. J.; Tong, S., Adaptive event-triggered output feedback control for nonlinear switched systems based on full state constraints, IEEE Trans. Circuits Syst. II, Express Briefs, 69, 9, 3779-3783, 2022
[22] Zhang, L.; Liang, H.; Sun, Y.; Ahn, C. K., Adaptive event-triggered fault detection scheme for semi-Markovian jump systems with output quantization, IEEE Trans. Syst. Man Cybern. Syst., 51, 4, 2370-2381, 2021
[23] Ko, K. S.; Sung, D. K., The effect of EV aggregators with time-varying delays on the stability of a load frequency control system, IEEE Trans. Power Syst., 33, 1, 669-680, 2018
[24] Khan, M.; Sun, H.; Xiang, Y.; Shi, D., Electric vehicles participation in load frequency control based on mixed \(H_2 / H_\infty \), Int. J. Electr. Power Energy Syst., 125, 106420-106430, 2021
[25] Naveed, A.; Sönmez, Ş.; Ayasun, S., Impact of electric vehicle aggregator with communication time delay on stability regions and stability delay margins in load frequency control system, J. Mod. Power Syst. Clean Energy, 9, 3, 595-601, 2021
[26] Abolpour, R., Direct search algorithm for load frequency control of a time-delayed electric vehicle aggregator, IEEE Trans. Ind. Appl., 59, 2, 2603-2614, 2023
[27] Ota, Y.; Taniguchi, H.; Nakajima, T.; Liyanage, K. M.; Baba, J.; Yokoyama, A., Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging, IEEE Trans. Smart Grid, 3, 1, 559-564, 2012
[28] Khan, M.; Sun, H., Complete provision of MPC-based LFC by electric vehicles with inertial and droop support from DFIG-based wind farm, IEEE Trans. Power Deliv., 37, 2, 716-726, 2022
[29] Zeng, H. B.; Zhou, S. J.; Zhang, X. M.; Wang, W., Delay-dependent stability analysis of load frequency control systems with electric vehicles, IEEE Trans. Cybern., 52, 12, 13645-13653, 2022
[30] Pham, T. N.; Nahavandi, S.; Hien, L. V.; Trinh, H.; Wong, K. P., Static output feedback frequency stabilization of time-delay power systems with coordinated electric vehicles state of charge control, IEEE Trans. Power Syst., 32, 5, 3862-3874, 2017
[31] Gu, Z.; Shi, P.; Yue, D.; Ding, Z. T., Decentralized adaptive event-triggered \(H_\infty\) filtering for a class of networked nonlinear interconnected systems, IEEE Trans. Cybern., 49, 5, 1570-1579, 2018
[32] Peng, C.; Tian, E.; Zhang, J.; Du, Dajun, Decentralized event-triggering communication scheme for large-scale systems under network environments, Inf. Sci., 380, 132-144, 2017
[33] Yang, B.; Hao, M.; Cao, J.; Zhao, X., Delay-dependent global exponential stability for neural networks with time-varying delay, Neurocomputing, 338, 172-180, 2019
[34] Zhang, X.; Li, M.; Wu, M.; She, J., Further results on stability and stabilisation of linear systems with state and input delays, Int. J. Syst. Sci., 40, 1, 1-10, 2009 · Zbl 1156.93377
[35] Yang, Y.; Niu, Y.; Zhang, Z., Dynamic event-triggered sliding mode control for interval Type-2 fuzzy systems with fading channels, ISA Trans., 110, 53-62, 2021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.