×

Some noteworthy alternating trilinear forms. (English) Zbl 1310.15041

An alternating trilinear form on a vector space \(V\) over a field \(\mathbb F\) is a mapping \(T:V^3\to{\mathbb F}\) which is linear separately in each variable and satisfies \(T(v_1,v_2,v_3)=0\), whenever \(v_i=v_j\) for distinct indices \(i, j\).
The authors investigate the existence of alternating trilinear forms with some special properties regarding their zeros. By passing to quotient spaces, one can assume from the start that the form is nondegenerate, i.e., that for each nonzero \(a\in V\) there exist \(b,c\in V\) with \(T(a,b,c)\neq0\). However, \(T\) may also vanish on a projective line, that is, the functional \(T(a,b,\cdot)\) may vanish identically for two distinct points \([a],[b]\) in a projective space \({\mathbb P}V\). In case of finite-dimensional real vector spaces, it is shown that except when \(\dim V\in\{3,7\}\) every alternating trilinear form on \(V\) has this property. The exception at \(\dim V=7\) is related to the existence of eight-dimensional real division algebra of octonions. It is further shown that six-dimensional vector spaces over finite fields admit trilinear alternating forms such that through each point \([a]\in{\mathbb P}V\) there exists a single projective line \([a,b]\subseteq{\mathbb P}V\) with \(T(a,b,\cdot)\) vanishing identically.

MSC:

15A69 Multilinear algebra, tensor calculus
51E23 Spreads and packing problems in finite geometry
15B33 Matrices over special rings (quaternions, finite fields, etc.)
17A35 Nonassociative division algebras

References:

[1] Bott R. Milnor J.W.: On the parallelizability of the spheres. Bull. Am. Math. Soc. 64, 87-89 (1958) · Zbl 0082.16602 · doi:10.1090/S0002-9904-1958-10166-4
[2] Brown R.B., Gray A.: Vector cross products. Comment. Math. Helv. 42, 222-236 (1967) · Zbl 0155.35702 · doi:10.1007/BF02564418
[3] Cohen A.M., Helminck A.G.: Trilinear alternating forms on a vector space of dimension 7. Commun. Algebra 16, 1-25 (1988) · Zbl 0646.15019 · doi:10.1080/00927878808823558
[4] Djoković D.Ž.: Classification of trivectors of an eight-dimensional real vector space. Linear Multilinear Algebra 13, 3-39 (1983) · Zbl 0515.15011 · doi:10.1080/03081088308817501
[5] Draisma J., Shaw R.: Singular lines of trilinear forms. Linear Algebra Appl. 433, 690-697 (2010) · Zbl 1213.15020 · doi:10.1016/j.laa.2010.03.040
[6] Gurevich G.B.: Classification des trivecteurs ayant le rang huit. C. R. (Dokl.) Acad. Sci. URSS 2, 353-356 (1935) · Zbl 0012.10003
[7] Kervaire M.A.: Non-parallelizability of the n-sphere for n > 7. Proc. Nat. Acad. Sci. USA 44, 280-283 (1958) · Zbl 0093.37303 · doi:10.1073/pnas.44.3.280
[8] Lidl R., Niederreiter H.: Introduction to finite fields and their applications. Cambridge University Press, Cambridge (1994) · Zbl 0820.11072 · doi:10.1017/CBO9781139172769
[9] Mateva Z.T., Topalova S.I.: Line spreads of PG(5, 2). J. Combin. Des. 17, 90-102 (2009) · Zbl 1177.51006 · doi:10.1002/jcd.20198
[10] Schafer R.D.: An introduction to nonassociative algebras. Academic Press, New York (1966) · Zbl 0145.25601
[11] Schouten J.A.: Klassifizierung der alternierenden Grössen dritten Grades in sieben Dimensionen. Rend. Circ. Mat. Palermo 55, 137-156 (1931) · JFM 57.0975.01 · doi:10.1007/BF03016791
[12] Shaw R.: Trivectors yielding spreads in PG(5,2). J. Geom. 96, 149-165 (2010) · Zbl 1206.51010 · doi:10.1007/s00022-010-0030-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.