×

Algorithmic approach to cosmological coherent state expectation values in loop quantum gravity. (English) Zbl 1479.83092

Summary: Within the lattice approach to loop quantum gravity on a fixed graph, explicit calculations tend to be involved and are rarely analytically manageable. However, being focused on a particularly interesting setting, concerned with expectation values with respect to coherent states on the lattice (sharply peaked on isotropic and flat cosmology), we are able to provide several simplifications which can facilitate approaching beyond-state-of-the-art problems. We present a step-by-step algorithm resulting in an analytical expression including up-to-first-order corrections in the spread of the coherent state. The algorithm is developed in such a way that it makes the computation straightforward and easily implementable.

MSC:

83C45 Quantization of the gravitational field
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
81R30 Coherent states
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory

References:

[1] Gambini, R.; Pullin, J., Loops, Knots, Gauge Theories and Quantum Gravity (2000), Cambridge: Cambridge University Press, Cambridge
[2] Rovelli, C., Quantum Gravity (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1091.83001
[3] Thiemann, T., Modern Canonical Quantum General Relativity (2008), Cambridge: Cambridge University Press, Cambridge
[4] Oeckl, R., Renormalisation for spin foam models of quantum gravity (2004)
[5] Bahr, B., On background-independent renormalization in spin foam models, POS, 157, FFP14 (2016) · doi:10.22323/1.224.0157
[6] Bahr, B.; Dittrich, B., Improved and perfect actions in discrete gravity, Phys. Rev. D, 80 (2009) · doi:10.1103/physrevd.80.124030
[7] Lang, T.; Liegener, K.; Thiemann, T., Hamiltonian renormalisation I: derivation from Osterwalder-Schrader reconstruction, Class. Quantum Grav., 35 (2018) · Zbl 1431.83056 · doi:10.1088/1361-6382/aaec56
[8] Thiemann, T., Canonical quantum gravity, constructive QFT and renormalisation (2020)
[9] Friedmann, A., ’Uber die Krmmung des Raumes, Z. Phys. A, 10, 377 (1922) · JFM 48.1031.02 · doi:10.1007/bf01332580
[10] Lemaître, G., Expansion of the universe, a homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae, Mon. Not. R. Astro. Soc., 91, 412 (1931) · JFM 57.1184.02 · doi:10.1093/mnras/91.4.412
[11] Robertson, H. P., Kinematics and world structure, Astrophys. J., 82, 284 (1935) · JFM 61.1451.04 · doi:10.1086/143681
[12] Walker, A. G., On Milne’s theory of world-structure, Proc. London Math. Soc., 42, 90 (1937) · Zbl 0015.27904 · doi:10.1112/plms/s2-42.1.90
[13] Hall, B. C., The Segal-Bargmann coherent state transform for compact Lie groups, J. Funct. Anal., 122, 103-151 (1994) · Zbl 0838.22004 · doi:10.1006/jfan.1994.1064
[14] Hall, B. C., Phase space bounds for quantum mechanics on a compact Lie group, Commun. Math. Phys., 184, 233-250 (1997) · Zbl 0869.22013 · doi:10.1007/s002200050059
[15] Thiemann, T., Gauge field theory coherent states (GCS): I. General properties, Class. Quantum Grav., 18, 2025-2064 (2001) · Zbl 0980.83022 · doi:10.1088/0264-9381/18/11/304
[16] Thiemann, T.; Winkler, O., Gauge field theory coherent states (GCS): II. Peakedness properties, Class. Quantum Grav., 18, 2561-2636 (2001) · Zbl 0999.83025 · doi:10.1088/0264-9381/18/14/301
[17] Thiemann, T.; Winkler, O., Gauge field theory coherent states (GCS): III. Ehrenfest theorems, Class. Quantum Grav., 18, 4629-4681 (2001) · Zbl 0994.83023 · doi:10.1088/0264-9381/18/21/315
[18] Alesci, E.; Cianfrani, F., Quantum-reduced loop gravity: cosmology, Phys. Rev. D, 87 (2013) · doi:10.1103/physrevd.87.083521
[19] Alesci, E.; Cianfrani, F., Quantum reduced loop gravity: Universe on a lattice, Phys. Rev. D, 92 (2015) · doi:10.1103/physrevd.92.084065
[20] Mäkinen, I., Operators of quantum-reduced loop gravity from the perspective of full loop quantum gravity, Phys. Rev. D, 102 (2020) · doi:10.1103/physrevd.102.106010
[21] Kogut, J.; Susskind, L., Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. Rev. D, 11, 395-408 (1975) · doi:10.1103/physrevd.11.395
[22] Creutz, M., Quarks, Gluons and Lattices (1983), Cambridge: Cambridge University Press, Cambridge
[23] Giesel, K.; Thiemann, T., Algebraic quantum gravity (AQG) I. Conceptual setup, Class. Quantum Grav., 24, 2465 (2007) · Zbl 1117.83045 · doi:10.1088/0264-9381/24/10/003
[24] Giesel, K.; Thiemann, T., Algebraic quantum gravity (AQG): II. Semiclassical analysis, Class. Quantum Grav., 24, 2499-2564 (2007) · Zbl 1117.83046 · doi:10.1088/0264-9381/24/10/004
[25] Dapor, A.; Liegener, K., Cosmological coherent state expectation values in LQG I. Isotropic kinematics, Class. Quantum Grav., 35 (2017) · Zbl 1480.83047 · doi:10.1088/1361-6382/aac4ba
[26] Liegener, K.; Zwicknagel, E. A., Expectation values of coherent states for SU(2) lattice gauge theories, J. High Energy Phys. (2020) · Zbl 1435.81146 · doi:10.1007/jhep02(2020)024
[27] Thiemann, T., Quantum spin dynamics (QSD) I, Class. Quantum Grav., 15, 839 (1998) · Zbl 0956.83013 · doi:10.1088/0264-9381/15/4/011
[28] Thiemann, TQuantum spin dynamics (QSD) IIClass. Quantum Grav.15875 · Zbl 0956.83013 · doi:10.1088/0264-9381/15/4/012
[29] Arnowitt, R.; Deser, S.; Misner, C.; Witten, L., The dynamics of general relativity, Gravitation: An Introduction to Current Research, 227-265 (1962), New York: Wiley, New York · Zbl 0115.43103
[30] Sen, A., Gravity as a spin system, Phys. Lett. B, 119, 89 (1982) · doi:10.1016/0370-2693(82)90250-7
[31] Ashtekar, A., New variables for classical and quantum gravity, Phys. Rev. Lett., 57, 2244 (1986) · doi:10.1103/physrevlett.57.2244
[32] Barbero, J. F., A real polynomial formulation of general relativity in terms of connection, Phys. Rev. D, 49, 6935 (1994) · doi:10.1103/physrevd.49.6935
[33] Dapor, A.; Liegener, A. K.; Pawłowski, T., Challenges in recovering a consistent cosmology from the effective dynamics of loop quantum gravity, Phys. Rev. D, 100 (2019) · doi:10.1103/physrevd.100.106016
[34] Thiemann, T., Quantum spin dynamics (QSD): VII. Symplectic structures and continuum lattice formulations of gauge field theories, Class. Quantum Grav., 18, 3293-3338 (2001) · Zbl 0987.83018 · doi:10.1088/0264-9381/18/17/301
[35] Ashtekar, A.; Lewandowski, J., Quantum theory of geometry II: volume operators, Adv. Theor. Math. Phys., 1, 388 (1998) · Zbl 0903.58067 · doi:10.4310/atmp.1997.v1.n2.a8
[36] Carmeli, M., Group Theory and General Relativity: Representations of the Lorentz Group and Their Applications to the Gravitational Field (2000), London: Imperial College Press, London · Zbl 0970.83001
[37] Bianchi, E.; Magliaro, E.; Perini, C., Coherent spin-networks, Phys. Rev. D, 82 (2010) · doi:10.1103/physrevd.82.024012
[38] Kaminski, W.; Liegener, K., Symmetry restriction and its application to gravity (2020)
[39] Brink, D.; Satchler, C., Angular Momentum (1968), Clarendon: Clarendon Press, Clarendon · Zbl 0137.45403
[40] Varshalovich, D., Quantum Theory of Angular Momentum (1988), Singapore: World Scientific, Singapore
[41] Bojowald, M., Loop quantum cosmology, Living Rev. Relativ., 8, 11 (2005) · Zbl 1255.83133 · doi:10.12942/lrr-2005-11
[42] Ashtekar, A., Loop quantum cosmology: an overview, Gen. Relativ. Gravit., 41, 707-741 (2009) · Zbl 1177.83003 · doi:10.1007/s10714-009-0763-4
[43] Ashtekar, A.; Pawlowski, T.; Singh, P., Quantum nature of the big bang, Phys. Rev. Lett., 96 (2006) · Zbl 1153.83417 · doi:10.1103/physrevlett.96.141301
[44] Taveras, V., LQC corrections to the Friedmann equations for a universe with a free scalar field, Phys. Rev. D, 78 (2008) · doi:10.1103/physrevd.78.064072
[45] Morales-Técotl, H.; Rastgoo, S.; Ruelas, J., Effective dynamics of the Schwarzschild black hole interior with inverse triad corrections (2018)
[46] Kelly, J. G.; Santacruz, R.; Wilson-Ewing, E., Effective loop quantum gravity framework for vacuum spherically symmetric spacetimes, Phys. Rev. D, 102 (2020) · doi:10.1103/physrevd.102.106024
[47] García-Quismondo, A.; Mena Marugán, G. A.; Pérez, G. S., The time-dependent mass of cosmological perturbations in loop quantum cosmology: Dapor-Liegener regularization, Class. Quantum Grav., 37 (2020) · Zbl 1479.83255 · doi:10.1088/1361-6382/abac6d
[48] Agullo, I.; Olemdo, J.; Sreenath, V., Observational consequences of Bianchi I spacetimes in loop quantum cosmology, Phys. Rev. D, 102 (2020) · doi:10.1103/physrevd.102.043523
[49] Giesel, K.; Thiemann, T., Scalar material reference systems and loop quantum gravity, Class. Quantum Grav., 32 (2015) · Zbl 1327.83114 · doi:10.1088/0264-9381/32/13/135015
[50] Assanioussi, M.; Dapor, A.; Liegener, K.; Pawlowski, T., Emergent de Sitter epoch of the quantum cosmos, Phys. Rev. Lett., 121 (2018) · doi:10.1103/physrevlett.121.081303
[51] Feynman, R. P., Simulating physics with computers, Int. J. Theor. Phys., 21, 467-488 (1982) · doi:10.1007/bf02650179
[52] Lloyd, S., Universal quantum simulators, Science, 273, 1073-1078 (1996) · Zbl 1226.81059 · doi:10.1126/science.273.5278.1073
[53] Cohen, L., Efficient simulation of loop quantum gravity: a scalable linear-optical approach, Phys. Rev. Lett., 126 (2021) · doi:10.1103/physrevlett.126.020501
[54] Li, K., Quantum spacetime on a quantum simulator, Commun. Phys., 2, 122 (2019) · doi:10.1038/s42005-019-0218-5
[55] Mielczarek, J., Prelude to simulations of loop quantum gravity on adiabatic quantum computers, Front. Astron. Space Sci., 8 (2021) · doi:10.3389/fspas.2021.571282
[56] Czelusta, G.; Mielczarek, J., Quantum simulations of a qubit of space, Phys. Rev. D, 103 (2021) · doi:10.1103/physrevd.103.046001
[57] Thiemann, T.; Zipfel, A., Stable coherent states, Phys. Rev. D, 93 (2016) · doi:10.1103/physrevd.93.084030
[58] Calcinari, A.; Freidel, L.; Livine, E.; Speziale, S., Twisted geometries coherent states for loop quantum gravity (2020)
[59] Marolf, D., Refined algebraic quantization: systems with a single constraint (1999)
[60] Marolf, D., Group averaging and refined algebraic quantization: where are we now? (2000)
[61] Bahr, B.; Thiemann, T., Gauge-invariant coherent states for loop quantum gravity: II. Non-abelian gauge groups, Class. Quantum Grav., 26 (2009) · Zbl 1160.83325 · doi:10.1088/0264-9381/26/4/045012
[62] Assanioussi, M.; Lewandowski, J.; Mäkinen, I., New scalar constraint operator for loop quantum gravity, Phys. Rev. D, 92 (2015) · doi:10.1103/physrevd.92.044042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.