×

Basis function method for numerical loop quantum cosmology: the Schwarzschild black hole interior. (English) Zbl 1478.83185

Summary: Loop quantum cosmology is a symmetry-reduced application of loop quantum gravity that has led to the resolution of classical singularities such as the big bang, and those at the center of black holes. This can be seen through numerical simulations involving the quantum Hamiltonian constraint that is a partial difference equation. The equation allows one to study the evolution of sharply-peaked Gaussian wave packets that generically exhibit a quantum ‘bounce’ or a non-singular passage through the classical singularity, thus offering complete singularity resolution. In addition, von-Neumann stability analysis of the difference equation – treated as a stencil for a numerical solution that steps through the triad variables – yields useful constraints on the model and the allowed space of states. In this paper, we develop a new method for the numerical solution of loop quantum cosmology models using a set of basis functions that offer a number of advantages over computing a solution by stepping through the triad variables. We use the Corichi and Singh model for the Schwarzschild interior as the main case study in this effort. The main advantage of this new method is computational efficiency and the ease of parallelization. In addition, we also discuss how the stability analysis appears in the context of this new approach.

MSC:

83C57 Black holes
83C75 Space-time singularities, cosmic censorship, etc.
83F05 Relativistic cosmology
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
70H45 Constrained dynamics, Dirac’s theory of constraints
39A30 Stability theory for difference equations

Software:

rompy

References:

[1] Thiemann T 2008 Modern Canonical Quantum General Relativity(Cambridge Monographs on Mathematical Physics) (Cambridge: Cambridge University Press)
[2] Rovelli C 2007 Quantum Gravity (Cambridge: Cambridge University Press) · Zbl 1140.83005
[3] Ashtekar A and Pullin J 2017 Loop Quantum Gravity: the First 30 Years (100 Years of General Relativity) (Singapore: World Scientific) · Zbl 1367.83004 · doi:10.1142/10445
[4] Ashtekar A and Singh P 2012 Class. Quantum Grav.28 213001 · Zbl 1230.83003 · doi:10.1088/0264-9381/28/21/213001
[5] Bojowald M 2008 Living Rev. Relativ.11 4 · Zbl 1316.83035 · doi:10.12942/lrr-2008-4
[6] Ashtekar A, Pawlowski T and Singh P 2006 Phys. Rev. Lett.96 141301 · Zbl 1153.83417 · doi:10.1103/PhysRevLett.96.141301
[7] Ashtekar A, Pawlowski T and Singh P 2006 Phys. Rev. D 74 084003 · Zbl 1197.83047 · doi:10.1103/PhysRevD.74.084003
[8] Singh P 2018 Comput. Sci. Eng.20 26 · doi:10.1109/MCSE.2018.042781324
[9] Brizuela D, Cartin D and Khanna G 2012 SIGMA8 001 · Zbl 1242.83036 · doi:10.3842/SIGMA.2012.001
[10] Singh P 2012 Class. Quantum Grav.29 244002 · Zbl 1260.83003 · doi:10.1088/0264-9381/29/24/244002
[11] Diener P, Gupt B, Megevand M and Singh P 2014 Class. Quantum Grav.31 165006 · Zbl 1298.83126 · doi:10.1088/0264-9381/31/16/165006
[12] Corichi A and Singh P 2016 Class. Quantum Grav.33 055006 · Zbl 1336.83021 · doi:10.1088/0264-9381/33/5/055006
[13] Yonika A, Khanna G and Singh P 2018 Class. Quantum Grav.35 045007 · Zbl 1386.83092 · doi:10.1088/1361-6382/aaa18d
[14] Rovelli C and Vidotto F 2014 Int. J. Mod. Phys.23 1442026 · doi:10.1142/S0218271814420267
[15] Haggard H and Rovelli C 2015 Phys. Rev. D 92 104020 · doi:10.1103/PhysRevD.92.104020
[16] Bianchi E, Christodoulou M, D’Ambrosio F, Haggard H and Rovelli C 2018 Class. Quantum Grav.35 225003 · doi:10.1088/1361-6382/aae550
[17] Olmedo J, Saini S and Singh P 2017 Class. Quantum Grav.34 225011 · Zbl 1380.83160 · doi:10.1088/1361-6382/aa8da8
[18] Barrau A, Bolliet B, Vidotto F and Weimer C 2016 J. Cosmol. Astropart. Phys.JCAP02(2016) 022 · doi:10.1088/1475-7516/2016/02/022
[19] Barrau A, Bolliet B, Schutten M and Vidotto F 2017 Phys. Lett. B 772 58 · doi:10.1016/j.physletb.2017.05.040
[20] Barrau A, Moulin F and Martineau K 2018 Phys. Rev. D 97 066019 · doi:10.1103/PhysRevD.97.066019
[21] Barrau A, Martineau K and Moulin F 2018 (arXiv:1808.08857)
[22] Ashtekar A, Pawlowski T, Singh P and Vandersloot K 2007 Phys. Rev. D 75 024035 · Zbl 1197.83048 · doi:10.1103/PhysRevD.75.024035
[23] Szulc L, Kaminski W and Lewandowski J 2007 Class. Quantum Grav.24 2621 · Zbl 1117.83053 · doi:10.1088/0264-9381/24/10/008
[24] Connors S and Khanna G 2006 Class. Quantum Grav.23 2919 · Zbl 1096.83027 · doi:10.1088/0264-9381/23/9/009
[25] Chaturantabut S and Sorensen D 2010 SIAM J. Sci. Comput.32 2737 · Zbl 1217.65169 · doi:10.1137/090766498
[26] Maday Y, Nguyen N, Patera A and Pau G 2009 Commun. Pure Appl. Anal.8 383-404 · Zbl 1184.65020 · doi:10.3934/cpaa.2009.8.383
[27] Antil H, Field S, Herrmann F, Nochetto R and Tiglio M 2013 J. Sci. Comput.57 604-37 · Zbl 1292.65024 · doi:10.1007/s10915-013-9722-z
[28] Field S, Galley C, Hesthaven J, Kaye J and Tiglio M 2014 Phys. Rev. X 4 031006
[29] Galley C rompy package https://bitbucket.org/chadgalley/rompy/src/master
[30] Courant R, Friedrichs K O and Lewy H 1967 IBM J.11 215 · Zbl 0145.40402 · doi:10.1147/rd.112.0215
[31] Saini S and Singh P 2019 Class. Quantum Grav.36 105010 · Zbl 1475.83039 · doi:10.1088/1361-6382/ab1608
[32] Boehmer C and Vandersloot K 2007 Phys. Rev. D 76 104030 · doi:10.1103/PhysRevD.76.104030
[33] Bojowald M, Cartin D and Khanna G 2007 Phys. Rev. D 76 064018 · doi:10.1103/PhysRevD.76.064018
[34] Sabharwal S and Khanna G 2008 Class. Quantum Grav.25 085009 · Zbl 1140.83357 · doi:10.1088/0264-9381/25/8/085009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.