×

Bouncing unitary cosmology. I: Mini-superspace general solution. (English) Zbl 1475.83137

Summary: We offer a new proposal for cosmic singularity resolution based upon a quantum cosmology with a unitary bounce. This proposal is illustrated via a novel quantization of a mini-superspace model in which there can be superpositions of the cosmological constant. This possibility leads to a finite, bouncing unitary cosmology. Whereas the usual Wheeler-DeWitt cosmology generically displays pathological behaviour in terms of non-finite expectation values and non-unitary dynamics, the finiteness and unitarity of our model are formally guaranteed. For classically singular models with a massless scalar field and cosmological constant, we show that well-behaved quantum observables can be constructed and generic solutions to the universal Schrödinger equation are singularity-free. Generic solutions of our model displays novel features including: (i) superpositions of values of the cosmological constant; (ii) universal effective physics due to non-trivial self-adjoint extensions of the Hamiltonian; and (iii) bound ‘Efimov universe’ states for negative cosmological constant. The last feature provides a new platform for quantum simulation of the early universe. A companion paper provides detailed interpretation and analysis of particular cosmological solutions that display a cosmic bounce due to quantum gravitational effects, a well-defined FLRW limit far from the bounce, and a semi-classical turnaround point in the dynamics of the scalar field which resembles an effective inflationary epoch.
For Part II, see [the authors, ibid. 36, No. 3, Article ID 035010, 33 p. (2019; Zbl 1475.83138)].

MSC:

83F05 Relativistic cosmology
83C45 Quantization of the gravitational field
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C75 Space-time singularities, cosmic censorship, etc.
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory

Citations:

Zbl 1475.83138

References:

[1] Penrose R 1965 Gravitational collapse and space-time singularities Phys. Rev. Lett.14 57 · Zbl 0125.21206 · doi:10.1103/PhysRevLett.14.57
[2] Hawking S W and Penrose R 1970 The singularities of gravitational collapse and cosmology Proc. R. Soc. A 314 529-48 · Zbl 0954.83012 · doi:10.1098/rspa.1970.0021
[3] Hawking S W and Ellis G F R 1973 The Large Scale Structure of Space-Time vol 1 (Cambridge: Cambridge University Press) · Zbl 0265.53054 · doi:10.1017/CBO9780511524646
[4] Senovilla J M 1998 Singularity theorems and their consequences Gen. Relativ. Gravit.30 701-848 · Zbl 0924.53045 · doi:10.1023/A:1018801101244
[5] Thorpe J A 1977 Curvature invariants and space-time singularities J. Math. Phys.18 960-4 · doi:10.1063/1.523377
[6] Curiel E 1999 The analysis of singular spacetimes Phil. Sci.66 S119-45 · doi:10.1086/392720
[7] Guth A H 1981 Inflationary universe: a possible solution to the horizon and flatness problems Phys. Rev. D 23 347 · Zbl 1371.83202 · doi:10.1103/PhysRevD.23.347
[8] Linde A D 1982 A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems Phys. Lett. B 108 389-93 · doi:10.1016/0370-2693(82)91219-9
[9] Vilenkin A 1983 Birth of inflationary universes Phys. Rev. D 27 2848 · doi:10.1103/PhysRevD.27.2848
[10] Borde A and Vilenkin A 1994 Eternal inflation and the initial singularity Phys. Rev. Lett.72 3305 · doi:10.1103/PhysRevLett.72.3305
[11] Brandenberger R and Vafa C 1989 Superstrings in the early universe Nucl. Phys. B 316 391-410 · doi:10.1016/0550-3213(89)90037-0
[12] Gasperini M and Veneziano G 1993 Pre-big-bang in string cosmology Astropart. Phys.1 317-39 · doi:10.1016/0927-6505(93)90017-8
[13] Khoury J, Ovrut B A, Steinhardt P J and Turok N 2001 Ekpyrotic universe: colliding branes and the origin of the hot big bang Phys. Rev. D 64 123522 · doi:10.1103/PhysRevD.64.123522
[14] Finelli F and Brandenberger R 2002 Generation of a scale-invariant spectrum of adiabatic fluctuations in cosmological models with a contracting phase Phys. Rev. D 65 103522 · doi:10.1103/PhysRevD.65.103522
[15] Nayeri A, Brandenberger R H and Vafa C 2006 Producing a scale-invariant spectrum of perturbations in a hagedorn phase of string cosmology Phys. Rev. Lett.97 021302 · doi:10.1103/PhysRevLett.97.021302
[16] Hartle J B and Hawking S W 1983 Wave function of the universe Phys. Rev. D 28 2960 · Zbl 1370.83118 · doi:10.1103/PhysRevD.28.2960
[17] Gielen S and Turok N 2016 Perfect quantum cosmological bounce Phys. Rev. Lett.117 021301 · doi:10.1103/PhysRevLett.117.021301
[18] Bojowald M 2001 Absence of a singularity in loop quantum cosmology Phys. Rev. Lett.86 5227 · doi:10.1103/PhysRevLett.86.5227
[19] Ashtekar A, Pawlowski T and Singh P 2006 Quantum nature of the big bang Phys. Rev. Lett.96 141301 · Zbl 1153.83417 · doi:10.1103/PhysRevLett.96.141301
[20] Ashtekar A, Pawlowski T and Singh P 2006 Quantum nature of the big bang: improved dynamics Phys. Rev. D 74 084003 · Zbl 1197.83047 · doi:10.1103/PhysRevD.74.084003
[21] Ashtekar A, Pawlowski T, Singh P and Vandersloot K 2007 Loop quantum cosmology of k = 1 frw models Phys. Rev. D 75 024035 · Zbl 1197.83048 · doi:10.1103/PhysRevD.75.024035
[22] Gielen S and Sindoni L 2016 Quantum cosmology from group field theory condensates: a review SIGMA12 082 · Zbl 1347.83015 · doi:10.3842/SIGMA.2016.082
[23] de Cesare M and Sakellariadou M 2017 Accelerated expansion of the universe without an inflaton and resolution of the initial singularity from group field theory condensates Phys. Lett. B 764 49-53 · Zbl 1369.83119 · doi:10.1016/j.physletb.2016.10.051
[24] Oriti D, Sindoni L and Wilson-Ewing E 2017 Bouncing cosmologies from quantum gravity condensates Class. Quantum Grav.34 04LT01 · Zbl 1358.83103 · doi:10.1088/1361-6382/aa549a
[25] Brandenberger R and Peter P 2017 Bouncing cosmologies: progress and problems Found. Phys.47 797-850 · Zbl 1372.83002 · doi:10.1007/s10701-016-0057-0
[26] DeWitt B S 1967 Quantum theory of gravity 1. The canonical theory Phys. Rev.160 1113-48 · Zbl 0158.46504 · doi:10.1103/PhysRev.160.1113
[27] Misner C W 1969 Quantum cosmology. I Phys. Rev.186 1319-27 · Zbl 0186.28604 · doi:10.1103/PhysRev.186.1319
[28] Ashtekar A, Corichi A and Singh P 2008 Robustness of key features of loop quantum cosmology Phys. Rev. D 77 024046 · doi:10.1103/PhysRevD.77.024046
[29] Amemiya F and Koike T 2009 Gauge-invariant construction of quantum cosmology Phys. Rev. D 80 103507 · doi:10.1103/PhysRevD.80.103507
[30] Lawrie I D 2012 Internal time, test clocks, and singularity resolution in dust-filled quantum cosmology Phys. Rev. D 85 023512 · doi:10.1103/PhysRevD.85.023512
[31] Bojowald M 2007 Singularities and quantum gravity AIP Conf. Proc.910 294 · Zbl 1157.83001 · doi:10.1063/1.2752483
[32] Kiefer C 2007 Quantum Gravity(International Series of Monographs on Physics) (Oxford: Clarendon) · Zbl 1123.83002 · doi:10.1093/acprof:oso/9780199212521.001.0001
[33] Falciano F T, Pinto-Neto N and Struyve W 2015 Wheeler-DeWitt quantization and singularities Phys. Rev. D 91 043524 · doi:10.1103/PhysRevD.91.043524
[34] Gryb S and Thébault K P Y 2016 Schrödinger evolution for the universe: reparametrization Class. Quantum Grav.33 065004 · Zbl 1338.83075 · doi:10.1088/0264-9381/33/6/065004
[35] Unruh W G and Wald R M 1989 Time and the interpretation of canonical quantum gravity Phys. Rev. D 40 2598 · doi:10.1103/PhysRevD.40.2598
[36] Cirac J I and Zoller P 2012 Goals and opportunities in quantum simulation Nat. Phys.8 264-6 · doi:10.1038/nphys2275
[37] Bloch I, Dalibard J and Nascimbene S 2012 Quantum simulations with ultracold quantum gases Nat. Phys.8 267-76 · doi:10.1038/nphys2259
[38] Efimov V 1970 Energy levels arising from resonant two-body forces in a three-body system Phys. Lett. B 33 563-4 · doi:10.1016/0370-2693(70)90349-7
[39] Gryb S and Thébault K P Y 2019 Bouncing unitary cosmology II: mini-superspace phenomenology Class. Quantum Grav.36 035010 · Zbl 1475.83138 · doi:10.1088/1361-6382/aaf837
[40] Isham C 1993 Canonical quantum gravity and the problem of time Integrable Systems, Quantum Groups and Quantum Field Theories ed A Ibort and M A Rodríguez (Dordrecht: Springer) pp 157-287 · Zbl 0831.53064 · doi:10.1007/978-94-011-1980-1_6
[41] Kuchař K 1991 The problem of time in canonical quantization of relativistic systems Conceptual Problems of Quantum Gravity ed A Ashtekar and J Stachel (Boston: Boston University Press) p 141 · Zbl 0850.83029
[42] Anderson E 2012 Problem of time in quantum gravity Annalen der Physik524 757-86 · Zbl 1261.83015 · doi:10.1002/andp.201200147
[43] Page D and Wootters W 1983 Evolution without evolution: dynamics described by stationary observables Phys. Rev. D 27 2885-92 · doi:10.1103/PhysRevD.27.2885
[44] Rovelli C 1990 Quantum mechanics without time: a model Phys. Rev. D 42 2638-46 · doi:10.1103/PhysRevD.42.2638
[45] Rovelli C 1991 Time in quantum gravity: an hypothesis Phys. Rev. D 43 442 · doi:10.1103/PhysRevD.43.442
[46] Rovelli C 2002 Partial observables Phys. Rev. D 65 124013 · doi:10.1103/PhysRevD.65.124013
[47] Gambini R and Porto R A 2001 Relational time in generally covariant quantum systems: four models Phys. Rev. D 63 105014 · doi:10.1103/PhysRevD.63.105014
[48] Dittrich B 2007 Partial and complete observables for hamiltonian constrained systems Gen. Relativ. Gravit.39 1891 · Zbl 1145.83015 · doi:10.1007/s10714-007-0495-2
[49] Dittrich B 2006 Partial and complete observables for canonical general relativity Class. Quantum Grav.23 6155 · Zbl 1111.83015 · doi:10.1088/0264-9381/23/22/006
[50] Gambini R, Porto R A, Pullin J and Torterolo S 2009 Conditional probabilities with dirac observables and the problem of time in quantum gravity Phys. Rev. D 79 041501 · doi:10.1103/PhysRevD.79.041501
[51] Gryb S and Thébault K P Y 2011 The role of time in relational quantum theories Found. Phys.42 1210 · Zbl 1257.83013 · doi:10.1007/s10701-012-9665-5
[52] Gryb S and Thébault K P Y 2014 Symmetry and evolution in quantum gravity Found. Phys.44 305-48 · Zbl 1302.83015 · doi:10.1007/s10701-014-9789-x
[53] Barbour J and Foster B Z 2008 Constraints and gauge transformations: Dirac’s theorem is not always valid (arXiv:0808.1223 [gr-qc])
[54] Pons J 2005 On dirac’s incomplete analysis of gauge transformations Stud. Hist. Phil. Sci. B 36 491 · Zbl 1222.81217
[55] Pons J, Salisbury D and Sundermeyer K A 2010 Observables in classical canonical gravity: folklore demystified J. Phys.: Conf. Ser.222 012018 · doi:10.1088/1742-6596/222/1/012018
[56] Pons J M and Salisbury D C 2005 The issue of time in generally covariant theories and the Komar-Bergmann approach to observables in general relativity Phys. Rev. D 71 124012 · doi:10.1103/PhysRevD.71.124012
[57] Unruh W G 1989 A unimodular theory of canonical quantum gravity Phys. Rev. D 40 1048 · doi:10.1103/PhysRevD.40.1048
[58] Kuchař K V 1991 Does an unspecified cosmological constant solve the problem of time in quantum gravity? Phys. Rev. D 43 3332 · doi:10.1103/PhysRevD.43.3332
[59] Gomes H, Gryb S and Koslowski T 2011 Einstein gravity as a 3D conformally invariant theory Class. Quantum Grav.28 045005 · Zbl 1210.83005 · doi:10.1088/0264-9381/28/4/045005
[60] Anderson E, Barbour J, Foster B Z, Kelleher B and O’Murchadha N 2005 The physical gravitational degrees of freedom Class. Quantum Grav.22 1795-802 · Zbl 1071.83003 · doi:10.1088/0264-9381/22/9/020
[61] Gryb S and Mercati F 2013 2 + 1 gravity on the conformal sphere Phys. Rev. D 87 064006 · doi:10.1103/PhysRevD.87.064006
[62] Socolovsky M 2013 Rindler space and unruh effect (arXiv:1304.2833 [gr-qc])
[63] Ellis G F and Schmidt B G 1977 Singular space-times Gen. Relativ. Gravit.8 915-53 · Zbl 0434.53048 · doi:10.1007/BF00759240
[64] Horowitz G T and Marolf D 1995 Quantum probes of spacetime singularities Phys. Rev. D 52 5670 · doi:10.1103/PhysRevD.52.5670
[65] Reed M and Simon B 1980 Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness vol 2 (Amsterdam: Elsevier)
[66] Gitman D M, Tyutin I and Voronov B L 2012 Self-Adjoint Extensions in Quantum Mechanics: General Theory, Applications to Schrödinger, Dirac Equations with Singular Potentials vol 62 (Berlin: Springer) · Zbl 1263.81002 · doi:10.1007/978-0-8176-4662-2
[67] Isham C J 1984 Topological and global aspects of quantum theory Conf. Proc. Les Houches 1983: Relativity, Groups and Topology pp 1059-1290 · Zbl 0593.53063
[68] DeWitt B S 1957 Dynamical theory in curved spaces. I. A review of the classical and quantum action principles Rev. Mod. Phys.29 377-97 · Zbl 0118.23301 · doi:10.1103/RevModPhys.29.377
[69] Dunster T 1990 Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter SIAM J. Math. Anal.21 995-1018 · Zbl 0703.33002 · doi:10.1137/0521055
[70] Gopalakrishnan S 2006 Self-adjointness, the renormalization of singular potentials PhD Thesis Amherst College
[71] Kunstatter G, Louko J and Ziprick J 2009 Polymer quantization, singularity resolution, and the 1/r 2 potential Phys. Rev. A 79 032104 · Zbl 1243.82063 · doi:10.1103/PhysRevA.79.032104
[72] Barbour J, Lostaglio M and Mercati F 2013 Scale anomaly as the origin of time Gen. Relativ. Gravit.45 911-38 · Zbl 1269.83028 · doi:10.1007/s10714-013-1516-y
[73] Ferlaino F and Grimm R 2010 Trend: forty years of Efimov physics: how a bizarre prediction turned into a hot topic Physics3 9 · doi:10.1103/Physics.3.9
[74] Reed M and Simon B 1980 Methods of Modern Mathematical Physics(Functional Analysis vol 1) (New York: Academic) · Zbl 0459.46001
[75] Kraemer T et al 2006 Evidence for efimov quantum states in an ultracold gas of caesium atoms Nature440 315-8 · doi:10.1038/nature04626
[76] Barceló C et al 2011 Analogue gravity Living Rev. Relativ.14 3 · Zbl 1316.83022 · doi:10.12942/lrr-2011-3
[77] Unruh W 1981 Experimental black-hole evaporation? Phys. Rev. Lett.46 1351-3 · doi:10.1103/PhysRevLett.46.1351
[78] Garay L, Anglin J, Cirac J and Zoller P 2000 Sonic analog of gravitational black holes in Bose-Einstein condensates Phys. Rev. Lett.85 4643 · doi:10.1103/PhysRevLett.85.4643
[79] Barcelo C, Liberati S and Visser M 2003 Analogue models for frw cosmologies Int. J. Mod. Phys. D 12 1641-9 · doi:10.1142/S0218271803004092
[80] Fischer U R and Schützhold R 2004 Quantum simulation of cosmic inflation in two-component Bose-Einstein condensates Phys. Rev. A 70 063615 · doi:10.1103/PhysRevA.70.063615
[81] Uhlmann M, Xu Y and Schützhold R 2005 Aspects of cosmic inflation in expanding Bose-Einstein condensates New J. Phys.7 248 · doi:10.1088/1367-2630/7/1/248
[82] Chä S-Y and Fischer U R 2017 Probing the scale invariance of the inflationary power spectrum in expanding quasi-two-dimensional dipolar condensates Phys. Rev. Lett.118 130404 · doi:10.1103/PhysRevLett.118.130404
[83] Weinfurtner S, Tedford E W, Penrice M C, Unruh W G and Lawrenc G A 2013 Classical aspects of Hawking radiation verified in analogue gravity experiment Analogue Gravity Phenomenology(Lecture Notes in Physics vol 870) ed D Faccio et al (Berlin: Springer) pp 167-80 · Zbl 1328.83116 · doi:10.1007/978-3-319-00266-8_8
[84] Steinhauer J 2014 Observation of self-amplifying hawking radiation in an analogue black-hole laser Nat. Phys.10 864-9 · doi:10.1038/nphys3104
[85] Steinhauer J 2016 Observation of quantum hawking radiation and its entanglement in an analogue black hole Nat. Phys.12 959-65 · doi:10.1038/nphys3863
[86] Rovelli C 2004 Quantum Gravity (Cambridge: Cambridge University Press) · Zbl 1091.83001 · doi:10.1017/CBO9780511755804
[87] Bojowald M 2006 Degenerate configurations, singularities and the non-abelian nature of loop quantum gravity Class. Quantum Grav.23 987 · Zbl 1087.83027 · doi:10.1088/0264-9381/23/3/023
[88] Husain V and Winkler O 2004 Singularity resolution in quantum gravity Phys. Rev. D 69 084016 · doi:10.1103/PhysRevD.69.084016
[89] Bojowald M and Skirzewski A 2006 Effective equations of motion for quantum systems Rev. Math. Phys.18 713-45 · Zbl 1124.82010 · doi:10.1142/S0129055X06002772
[90] Brizuela D 2014 Statistical moments for classical and quantum dynamics: formalism and generalized uncertainty relations Phys. Rev. D 90 085027 · doi:10.1103/PhysRevD.90.085027
[91] Bojowald M 2007 Large scale effective theory for cosmological bounces Phys. Rev. D 75 081301 · doi:10.1103/PhysRevD.75.081301
[92] Bojowald M, Brizuela D, Hernández H H, Koop M J and Morales-Técotl H A 2011 High-order quantum back-reaction and quantum cosmology with a positive cosmological constant Phys. Rev. D 84 043514 · doi:10.1103/PhysRevD.84.043514
[93] Bojowald M 2012 Quantum cosmology: effective theory Class. Quantum Grav.29 213001 · Zbl 1266.83001 · doi:10.1088/0264-9381/29/21/213001
[94] Bojowald M 2008 Loop quantum cosmology Living Rev. Relativ.11 4 · Zbl 1316.83035 · doi:10.12942/lrr-2008-4
[95] Arraut I, Batic D and Nowakowski M 2010 Maximal extension of the schwarzschild space-time inspired by noncommutative geometry J. Math. Phys.51 022503 · Zbl 1309.83078 · doi:10.1063/1.3317913
[96] Barbour J and O’Murchadha N 2010 Conformal superspace: the configuration space of general relativity (arXiv:1009.3559 [gr-qc])
[97] Gomes H and Koslowski T 2012 The link between general relativity and shape dynamics Class. Quantum Grav.29 075009 · Zbl 1243.83048 · doi:10.1088/0264-9381/29/7/075009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.