×

Black hole evolution in the Bondi-Hoyle-Lyttleton accretion model. (English) Zbl 1533.83053

Summary: In this paper, we exhibit analytical solutions for the evolution of the mass of an astrophysical object accreting cosmic fluid according to the Bondi-Hoyle-Lyttleton mechanism. The key assumption of this model is that the adiabatic speed of sound within the accreted fluid directly affects the rate of change of the mass of the accreting object. We consider different literature equations of state, as the (Modified) Berthelot, Logotropic, generalized polytropic of index \(n\), and quadratic models. We assume the fluid to evolve either according to General Relativity or to the Randall-Sundrum type 1 gravity model far away from the astrophysical object in an asymptotically Friedmann universe. We claim that this accretion mechanism is unlikely to affect the mass-radius relationship of the photon sphere beyond the Schwarzschild one at the present time, and that the critical point of accretion in the (Modified) Berthelot fluid flow is hidden by the event horizon. Our work belongs to the broader research line investigating the interplay of small-scale and large-scale Physics in the modeling of gravitational phenomena.

MSC:

83C57 Black holes
83C10 Equations of motion in general relativity and gravitational theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83E15 Kaluza-Klein and other higher-dimensional theories
Full Text: DOI

References:

[1] Carrera, M., Giulini, D.: Influence of global cosmological expansion on local dynamics and kinematics. Rev. Mod. Phys. 82, 169 (2010). arXiv:0810.2712
[2] Carr, BJ, The primordial black hole mass spectrum, Ap J., 201, 1 (1975) · doi:10.1086/153853
[3] Harada, T.; Yoo, C-M; Kohri, K., Threshold of primordial black hole formation, Phys. Rev. D, 88, 084051 (2013) · doi:10.1103/PhysRevD.88.084051
[4] Jedamzik, K.; Lemoine, M.; Martin, J., Collapse of small-scale density perturbations during preheating in single field inflation, JCAP, 1009, 034 (2010) · doi:10.1088/1475-7516/2010/09/034
[5] Martin, J.; Papanikolaou, T.; Vennin, V., Primordial black holes from the preheating instability, JCAP, 01, 024 (2020) · doi:10.1088/1475-7516/2020/01/024
[6] Carrion, K.; Hidalgo, JC; Montiel, A.; Padilla, LE, Complex scalar field reheating and primordial black hole production, JCAP, 07, 001 (2021) · Zbl 1485.83067
[7] Torres-Lomas, E., Hidalgo, J.C., Malik, K.A., Arturo, U.-L.L.: Formation of subhorizon black holes from preheating. Phys. Rev. D 89, 083008 (2014). arXiv:1401.6960
[8] Heckman, T.; Best, P., The co-evolution of galaxies and supermassive black holes: Insights from surveys of the contemporary universe, Annu. Rev. Astron. Astrophys., 52, 589 (2014) · doi:10.1146/annurev-astro-081913-035722
[9] Fabian, A.C.: Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455 (2012). arXiv:1204.4114
[10] Rachel, S.; Somerville, RD, Physical models of galaxy formation in a cosmological framework, Annu. Rev. Astron. Astrophys., 53, 51 (2015) · doi:10.1146/annurev-astro-082812-140951
[11] Kormendy, J.; Ho, LC, Coevolution (or not) of supermassive black holes and host galaxies, Annu. Rev. Astron. Astrophys., 51, 511 (2013) · doi:10.1146/annurev-astro-082708-101811
[12] Babichev, E.; Dokuchaev, V.; Eroshenko, Y., Black hole mass decreasing due to phantom energy accretion, Phys. Rev. Lett., 93, 021102 (2004) · doi:10.1103/PhysRevLett.93.021102
[13] Jamil, M.; Qadir, A., Primordial black holes in phantom cosmology, Gen. Relativ. Gravit., 43, 1069 (2011) · Zbl 1213.85059 · doi:10.1007/s10714-010-0928-1
[14] Jamil, M., Evolution of a Schwarzschild black hole in phantom-like Chaplygin gas cosmologies, Eur. Phys. J. C, 62, 609 (2009) · Zbl 1189.83049 · doi:10.1140/epjc/s10052-009-1051-x
[15] Babichev, E.; Dokuchaev, V.; Eroshenko, Y., The accretion of dark energy onto a black hole, J. Exp. Theor. Phys., 100, 528 (2005) · doi:10.1134/1.1901765
[16] de Freitas Pacheco, A.J., Horvath, J.E.: Generalized second law and phantom cosmology: accreting black holes. Class. Quantum Grav. 24, 5427 (2007). arXiv:0709.1240 · Zbl 1148.83352
[17] Faraoni, V.; Jacques, A., Cosmological expansion and local physics, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.063510
[18] Faraoni, V., Prain, A.: Understanding dynamical black hole apparent horizons. arXiv preprint arXiv:1511.07775 (2015)
[19] Faraoni, V.; Moreno, AFZ; Nandra, R., Making sense of the bizarre behavior of horizons in the McVittie spacetime, Phys. Rev. D, 85, 8, 083526 (2012) · doi:10.1103/PhysRevD.85.083526
[20] Gregoris, D., Ong, Y.C., Wang, B.: The horizon of the McVittie black hole: on the role of the cosmic fluid modeling. Eur. Phys. J. C 80, 159 (2020). arXiv:1911.01809 [gr-qc]
[21] Gao, C.; Chen, X.; Faraoni, V.; Shen, Y-G, Does the mass of a black hole decrease due to the accretion of phantom energy?, Phys. Rev. D, 78, 024008 (2008) · doi:10.1103/PhysRevD.78.024008
[22] Capozziello, S.; D’Agostino, R.; Gregoris, D., Black holes and naked singularities from Anton-Schmid’s fluids, Phys. Dark Univ., 28, 100513 (2020) · doi:10.1016/j.dark.2020.100513
[23] Hoyle, F.; Lyttleton, R., On the accretion theory of stellar evolution, Mon. Not. R. Astron. Soc., 101, 227 (1941) · doi:10.1093/mnras/101.4.227
[24] Bondi, H.; Hoyle, F., On the mechanism of accretion by stars, Mon. Not. R. Astron. Soc., 104, 273 (1944) · doi:10.1093/mnras/104.5.273
[25] Bondi, H., On spherically symmetrical accretion, Mon. Not. R. Astron. Soc., 112, 195 (1952) · doi:10.1093/mnras/112.2.195
[26] Alejandro, C.O., Luciano, R., Duvan, L.C.F., Antonio, F.J., Carlos, H., Eugen, R.: Bondi-Hoyle-Lyttleton accretion onto a rotating black hole with ultralight scalar hair. arXiv preprint arXiv:2301.06564 (2023)
[27] Donmez, O., Bondi-Hoyle accretion around the non-rotating black hole in 4D Einstein-Gauss-Bonnet gravity, Eur. Phys. J. C, 81, 113 (2021) · doi:10.1140/epjc/s10052-021-08923-1
[28] Donmez, O., Dynamical evolution of the shock cone around \(4D\) Einstein-Gauss Bonnet rotating black hole, Phys. Lett. B, 827, 136997 (2022) · Zbl 1487.83087 · doi:10.1016/j.physletb.2022.136997
[29] Cardone, V.F., Tortora, C., Troisi, A., Capozziello, S.: Beyond the perfect fluid hypothesis for the dark energy equation of state. Phys. Rev. D 73(4), 043508 (2006). arXiv:astro-ph/0511528 [astro-ph]
[30] Chavanis, P-H, The Logotropic dark fluid as a unification of dark matter and dark energy, Phys. Lett. B, 758, 59 (2016) · doi:10.1016/j.physletb.2016.04.042
[31] Ananda, K.N., Bruni, M.: Cosmological dynamics and dark energy with a nonlinear equation of state: a quadratic model. Phys. Rev. D 74(2), 023523 (2006) arXiv:astro-ph/0512224 [astro-ph]
[32] Ananda, KN; Bruni, M., Cosmological dynamics and dark energy with a quadratic equation of state: anisotropic models, large-scale perturbations, and cosmological singularities, Phys. Rev. D, 74, 2, 023524 (2006) · doi:10.1103/PhysRevD.74.023524
[33] Ganguly, C.; Bruni, M., Quasi-isotropic cycles and non-singular bounces in a Mixmaster cosmology, Phys. Rev. Lett., 123, 201301 (2019) · doi:10.1103/PhysRevLett.123.201301
[34] Aljaf, M., Gregoris, D., Khurshudyan, M.: Assessing the foundation and applicability of some dark energy fluid models in the Dirac-Born-Infeld framework. Int. J. Modern Phys. A 37(34), 2250211 (2022). arXiv:2010.05278 [gr-qc]
[35] Boshkayev, K.; D’Agostino, R.; Luongo, O., Extended logotropic fluids as unified dark energy models, Eur. Phys. J. C, 79, 332 (2019) · doi:10.1140/epjc/s10052-019-6854-9
[36] Randall, L.; Sundrum, R., An alternative to compactification, Phys. Rev. Lett., 83, 4690 (1999) · Zbl 0946.81074 · doi:10.1103/PhysRevLett.83.4690
[37] Mestel, L., The influence of stellar radiation on the rate of accretion, Mon. Not. R. Astron. Soc., 114, 437 (1954) · doi:10.1093/mnras/114.4.437
[38] Brevik, I.; Jamil, M., Black holes in the turbulent phase of viscous rip cosmology, Int. J. Geom. Meth. Mod. Phys., 16, 1950030 (2019) · Zbl 1411.83142 · doi:10.1142/S0219887819500300
[39] de Lima, J.A.S., Guariento, D.C., Horvath, J.E.: Analytical solutions of accreting black holes immersed in a Lambda-CDM model. Phys. Lett. B 693(3), 218-220 (2010). arXiv:1008.4333 [gr-qc]
[40] Nayak, B.; Jamil, M., Effect of vacuum energy on evolution of primordial black holes in Einstein gravity, Phys. Lett. B, 709, 118 (2012) · doi:10.1016/j.physletb.2012.02.010
[41] Tolman, RC, Static solutions of Einstein’s field equations for spheres of fluid, Phys. Rev., 55, 4, 364 (1939) · Zbl 0020.28407 · doi:10.1103/PhysRev.55.364
[42] Oppenheimer, JR; Volkoff, GM, On massive neutron cores, Phys. Rev., 55, 4, 374 (1939) · Zbl 0020.28501 · doi:10.1103/PhysRev.55.374
[43] Bini, D.; Gregoris, D.; Rosquist, K.; Succi, S., Effects of friction forces on the motion of objects in smoothly matched interior/exterior spacetimes, Class. Quant. Grav., 30, 025009 (2013) · Zbl 1263.83078 · doi:10.1088/0264-9381/30/2/025009
[44] Boshkayev, K.; Konysbayev, T.; Kurmanov, E.; Luongo, O.; Malafarina, D.; Mutalipova, K.; Zhumakhanova, G., Effects of non-vanishing dark matter pressure in the Milky Way Galaxy, Mon. Not. R. Astron. Soc., 508, 1543 (2021) · doi:10.1093/mnras/stab2571
[45] José, A., Jimenéz Madrid, J.A.: Chaplygin gas may prevent big trip. Phys. Lett. B 634, 106 (2006). arXiv:astro-ph/0512117
[46] Yurov, A.V., Martin-Moruno, P., Gonzalez-Diaz, P.F.: New “Bigs” in cosmology. Nuclear Physics B 759, 320-341 (2006). arXiv:astro-ph/0606529 [astro-ph] · Zbl 1116.83041
[47] Ashtekar, A.; Pawlowski, T.; Singh, P., Quantum nature of the big bang, Phys. Rev. Lett., 96, 141301 (2006) · Zbl 1153.83417 · doi:10.1103/PhysRevLett.96.141301
[48] Ashtekar, A.; Pawlowski, T.; Singh, P., Quantum nature of the big bang: improved dynamics, Phys. Rev. D, 74, 084003 (2006) · Zbl 1197.83047 · doi:10.1103/PhysRevD.74.084003
[49] Dwivedee, D.; Nayak, B.; Jamil, M.; Singh, LP; Myrzakulov, R., Evolution of primordial black holes in loop quantum cosmology, J. Astrophys. Astron., 35, 97-106 (2014) · doi:10.1007/s12036-014-9276-y
[50] Martin-Moruno, P., On the formalism of dark energy accretion onto black- and worm-holes, Phys. Lett. B, 659, 40 (2008) · Zbl 1246.83263 · doi:10.1016/j.physletb.2007.10.083
[51] Aljaf, M.; Gregoris, D.; Khurshudyan, M., Phase space analysis and singularity classification for linearly interacting dark energy models, Eur. Phys. J. C, 80, 112 (2020) · doi:10.1140/epjc/s10052-020-7671-x
[52] Chakraborty, S.; Gregoris, D., Cosmological evolution with quadratic gravity and nonideal fluids, Eur. Phys. J. C, 81, 944 (2021) · doi:10.1140/epjc/s10052-021-09697-2
[53] Capozziello, S.; D’Agostino, R.; Luongo, O., Cosmic acceleration from a single fluid description, Phys. Dark Univ., 20, 1 (2018) · doi:10.1016/j.dark.2018.02.002
[54] Capozziello, S.; D’Agostino, R.; Giambò, R.; Luongo, O., Effective field description of the Anton-Schmidt cosmic fluid, Phys. Rev. D, 99, 023532 (2019) · doi:10.1103/PhysRevD.99.023532
[55] Odintsov, SD; Oikonomou, VK; Timoshkin, AV; Saridakis, EN; Myrzakulov, R., Cosmological fluids with logarithmic equation of state, Ann. Phys., 398, 238-253 (2018) · doi:10.1016/j.aop.2018.09.015
[56] Chavanis, P-H, New predictions from the logotropic model, Phys. Dark Univ., 24, 100271 (2019) · doi:10.1016/j.dark.2019.100271
[57] Boshkayev, K.; Konysbayev, T.; Luongo, O.; Muccino, M.; Pace, F., Testing generalized logotropic models with cosmic growth, Phys. Rev. D, 104, 023520 (2021) · doi:10.1103/PhysRevD.104.023520
[58] Myrzakulov, R.; Sebastiani, L., Inhomogeneous viscous fluids for inflation, Astrophys. Space Sci., 356, 205 (2015) · doi:10.1007/s10509-014-2203-5
[59] Horedt, GP, Polytropes. Applications in Astrophysics and Related Fields (2004), Dordrecht: Kluwer, Dordrecht
[60] Weigelt, G.; Hofmann, KH; Kishimoto, M.; Hnig, S.; Schertl, D.; Marconi, A.; Millour, F.; Petrov, R.; Fraix-Burnet, D.; Malbet, F.; Tristram, K., VLTI/AMBER observations of the Seyfert nucleus of NGC 3783, Astron. Astrophys., 541, L9 (2012) · doi:10.1051/0004-6361/201219213
[61] Springel, V.; White, SD; Jenkins, A.; Frenk, CS; Yoshida, N.; Gao, L.; Navarro, J.; Thacker, R.; Croton, D.; Helly, J.; Peacock, JA, Simulating the joint evolution of quasars, galaxies and their large-scale distribution, Nature, 435, 629 (2005) · doi:10.1038/nature03597
[62] Michel, FC, Accretion of matter by condensed objects, Astrophys. Space Sci., 15, 153-160 (1972) · doi:10.1007/BF00649949
[63] Malek, E., Fluid accretion onto a spherical black hole: relativistic description versus the Bondi model, Phys. Rev. D, 60, 104043 (1999) · doi:10.1103/PhysRevD.60.104043
[64] Cotǎescu, AE, Dynamical particles in spatially flat FLRW space-times, Eur. Phys. J. C, 82, 86 (2022) · doi:10.1140/epjc/s10052-022-10023-7
[65] Capozziello, S.; D’Agostino, R.; Luongo, O., Extended gravity cosmography, Int. J. Mod. Phys. D, 28, 1930016 (2019) · Zbl 1425.83084 · doi:10.1142/S0218271819300167
[66] The GRAVITY Collaboration, A geometric distance measurement to the Galactic Center black hole with 0.3
[67] The Event Horizon Telescope Collaboration, First M87 event horizon telescope results. VIII. Magnetic field structure near the event horizon, ApJ Lett., 910, L13 (2021)
[68] Vagnozzi, S.; Roy, R.; Tsai, YD; Visinelli, L.; Afrin, M.; Allahyari, A.; Bambhaniya, P.; Dey, D.; Ghosh, SG; Joshi, PS; Jusufi, K., Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A, Classical and Quantum Gravity., 40, 165007 (2023) · doi:10.1088/1361-6382/acd97b
[69] Chang, KM, The number of critical points in polytropic accretion onto black holes, A &A, 142, 212 (1985)
[70] Ray, D., Accretion of gas by a Schwarzchild black hole, A &A, 82, 368 (1980)
[71] Begelman, MC, Accretion of \(\gamma >5/3\) Gas by a Schwarzschild Black Hole, A &A, 70, 583 (1978)
[72] Karkowski, J.; Kinasiewicz, B.; Mach, P.; Malec, E.; Swierczynski, Z., Universality and backreaction in a general-relativistic accretion of steady fluids, Phys. Rev. D, 73, 021503(R) (2006) · doi:10.1103/PhysRevD.73.021503
[73] Ghez, AM; Klein, B.; Morris, MR; Becklin, E., High proper-motion stars in the vicinity of Sagittarius A*: evidence for a supermassive black hole at the center of our galaxy, Astrophys. J., 509, 678 (1998) · doi:10.1086/306528
[74] The Event Horizon Telescope Collaboration, First M87 Event Horizon Telescope results. IV. Imaging the central supermassive black hole, Astrophys. J. Lett., 875, L4 (2019) · doi:10.3847/2041-8213/ab0e85
[75] Mizuno, Y.; Younsi, Z.; Fromm, CM; Porth, O.; De Laurentis, M.; Olivares, H.; Falcke, H.; Kramer, M.; Rezzolla, L., The current ability to test theories of gravity with black hole shadows, Nat. Astron., 2, 585 (2018) · doi:10.1038/s41550-018-0449-5
[76] Atamurotov, F.; Abdujabbarov, A.; Ahmedov, B., Shadow of rotating non-Kerr black hole, Phys. Rev. D, 88, 064004 (2013) · doi:10.1103/PhysRevD.88.064004
[77] Cunha, PV; Herdeiro, CA; Radu, E.; Ruarsson, HF, Shadows of Kerr black holes with scalar hair, Phys. Rev. Lett., 115, 21, 211102 (2015) · doi:10.1103/PhysRevLett.115.211102
[78] Adler, SL; Virbhadra, KS, Cosmological constant corrections to the photon sphere and black hole shadow radii, Gen. Relativ. Gravit, 54, 8, 93 (2022) · Zbl 1510.83049 · doi:10.1007/s10714-022-02976-7
[79] Narayan, R.; Johnson, MD; Gammie, CF, The shadow of a spherically accreting black hole, Astrophys. J. Lett., 885, L33 (2019) · doi:10.3847/2041-8213/ab518c
[80] Ahmed, AK; Camci, U.; Jamil, M., Accretion on Reissner-Nordstrom-(anti)-de Sitter black hole with global monopole, Class. Quantum Grav., 33, 21, 215012 (2016) · Zbl 1351.83015 · doi:10.1088/0264-9381/33/21/215012
[81] Azreg-Ainou, M.; Ahmed, AK; Jamil, M., Spherical accretion by normal and phantom Einstein-Maxwell-dilaton black holes, Class. Quantum Grav., 35, 23, 235001 (2018) · Zbl 1431.83027 · doi:10.1088/1361-6382/aae997
[82] Bahamonde, S.; Jamil, M., Accretion processes for general spherically symmetric compact objects, Eur. Phys. Jour. C, 75, 508 (2015) · doi:10.1140/epjc/s10052-015-3734-9
[83] Yang, S.; Liu, C.; Zhu, T.; Zhao, L.; Qiang, W.; Yang, K.; Jamil, M., Spherical accretion flow onto general parameterized spherically symmetric black hole spacetimes, Chinese Phys. C, 45, 015102 (2021) · doi:10.1088/1674-1137/abc066
[84] Ahmed, AK; Azreg-Ainou, M.; Faizal, M.; Jamil, M., Cyclic and heteroclinic flows near general static spherically symmetric black holes, Eur. Phys. J. C, 76, 1-21 (2016) · doi:10.1140/epjc/s10052-016-4112-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.