×

The CMB bispectrum from bouncing cosmologies. (English) Zbl 1487.83119


MSC:

83E05 Geometrodynamics and the holographic principle
83C45 Quantization of the gravitational field
81V80 Quantum optics
60G35 Signal detection and filtering (aspects of stochastic processes)

Software:

CLASS

References:

[1] Planck Collaboration; Aghanim, N., Planck 2018 results. I. Overview and the cosmological legacy of Planck, Astron. Astrophys., 641, A1 (2020) · doi:10.1051/0004-6361/201833880
[2] Cyburt, Richard H.; Fields, Brian D.; Olive, Keith A.; Yeh, Tsung-Han, Big Bang Nucleosynthesis: 2015, Rev. Mod. Phys., 88 (2016) · doi:10.1103/RevModPhys.88.015004
[3] DES Collaboration; Abbott, T. M. C., Dark Energy Survey Year 1 Results: cosmological constraints from cluster abundances and weak lensing, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.023509
[4] SDSS Collaboration; Abolfathi, Bela, The Fourteenth Data Release of the Sloan Digital Sky Survey: first Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment, Astrophys. J. Suppl., 235, 42 (2018) · doi:10.3847/1538-4365/aa9e8a
[5] Starobinsky, Alexei A.; Khalatnikov, I. M.; Mineev, V. P., Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett., 30, 682-685 (1979)
[6] Guth, Alan H.; Fang, Li-Zhi; Ruffini, R., The Inflationary Universe: a Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D, 23, 347-356 (1981) · Zbl 1371.83202 · doi:10.1103/PhysRevD.23.347
[7] Linde, Andrei D.; Fang, Li-Zhi; Ruffini, R., A New Inflationary Universe Scenario: a Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B, 108, 389-393 (1982) · doi:10.1016/0370-2693(82)91219-9
[8] Mukhanov, Viatcheslav F.; Chibisov, G. V., Quantum Fluctuations and a Nonsingular Universe, JETP Lett., 33, 532-535 (1981)
[9] Mukhanov, Viatcheslav F.; Chibisov, G. V., The Vacuum energy and large scale structure of the universe, Sov. Phys. JETP, 56, 258-265 (1982)
[10] Tolman, Richard C., On the Theoretical Requirements for a Periodic Behaviour of the Universe, Phys. Rev., 38, 1758 (1931) · JFM 57.1204.09 · doi:10.1103/PhysRev.38.1758
[11] Murphy, G. L., Big-bang model without singularities, Phys. Rev. D, 8, 4231-4233 (1973) · doi:10.1103/PhysRevD.8.4231
[12] Novello, M.; Salim, J. M., NONLINEAR PHOTONS IN THE UNIVERSE, Phys. Rev. D, 20, 377-383 (1979) · doi:10.1103/PhysRevD.20.377
[13] Allen, Laura E.; Wands, David, Cosmological perturbations through a simple bounce, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.063515
[14] Fabris, J. C.; Perez, R. S.; Pinto-Neto, N.; Perez Bergliaffa, Santiago Esteban, A Born-Infeld-like f(R) gravity, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.103525
[15] Cai, Yi-Fu; Easson, Damien A.; Brandenberger, Robert, Towards a Nonsingular Bouncing Cosmology, JCAP, 08 (2012) · doi:10.1088/1475-7516/2012/08/020
[16] Ijjas, Anna; Steinhardt, Paul J., Classically stable nonsingular cosmological bounces, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.121304
[17] Ilyas, Amara; Zhu, Mian; Zheng, Yunlong; Cai, Yi-Fu; Saridakis, Emmanuel N., DHOST Bounce, JCAP, 09 (2020) · Zbl 1493.83032 · doi:10.1088/1475-7516/2020/09/002
[18] Melnikov, V. N.; Orlov, S. V., NONSINGULAR COSMOLOGY AS A QUANTUM VACUUM EFFECT, Phys. Lett. A, 70, 263-265 (1979) · doi:10.1016/0375-9601(79)90117-8
[19] Gotay, M. J.; Demaret, J., QUANTUM COSMOLOGICAL SINGULARITIES, Phys. Rev. D, 28, 2402-2413 (1983) · doi:10.1103/PhysRevD.28.2402
[20] F. Tipler, Interpreting the wave function of the universe, Phys. Rept.137 (1986) 231. · doi:10.1016/0370-1573(86)90011-6
[21] Acacio de Barros, J.; Pinto-Neto, N.; Sagioro-Leal, M. A., The Causal interpretation of dust and radiation fluids nonsingular quantum cosmologies, Phys. Lett. A, 241, 229-239 (1998) · doi:10.1016/S0375-9601(98)00169-8
[22] Colistete, R. Jr.; Fabris, J. C.; Pinto-Neto, N., Gaussian superpositions in scalar tensor quantum cosmological models, Phys. Rev. D, 62 (2000) · doi:10.1103/PhysRevD.62.083507
[23] Bojowald, Martin, Absence of singularity in loop quantum cosmology, Phys. Rev. Lett., 86, 5227-5230 (2001) · doi:10.1103/PhysRevLett.86.5227
[24] Khoury, Justin; Ovrut, Burt A.; Steinhardt, Paul J.; Turok, Neil, The Ekpyrotic universe: colliding branes and the origin of the hot big bang, Phys. Rev. D, 64 (2001) · doi:10.1103/PhysRevD.64.123522
[25] Alvarenga, F. G.; Fabris, J. C.; Lemos, N. A.; Monerat, G. A., Quantum cosmological perfect fluid models, Gen. Rel. Grav., 34, 651-663 (2002) · Zbl 0998.83076 · doi:10.1023/A:1015986011295
[26] Ashtekar, Abhay; Pawlowski, Tomasz; Singh, Parampreet, Quantum nature of the big bang, Phys. Rev. Lett., 96 (2006) · Zbl 1153.83417 · doi:10.1103/PhysRevLett.96.141301
[27] Peter, Patrick; Pinto-Neto, Nelson, Cosmology without inflation, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.063506
[28] Ashtekar, Abhay; Singh, Parampreet, Loop Quantum Cosmology: a Status Report, Class. Quant. Grav., 28 (2011) · Zbl 1230.83003 · doi:10.1088/0264-9381/28/21/213001
[29] Gielen, Steffen; Turok, Neil, Perfect Quantum Cosmological Bounce, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.021301
[30] Ijjas, Anna; Steinhardt, Paul J., Implications of Planck2015 for inflationary, ekpyrotic and anamorphic bouncing cosmologies, Class. Quant. Grav., 33 (2016) · Zbl 1338.83214 · doi:10.1088/0264-9381/33/4/044001
[31] Cai, Yi-Fu; Duplessis, Francis; Easson, Damien A.; Wang, Dong-Gang, Searching for a matter bounce cosmology with low redshift observations, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.043546
[32] Bacalhau, Anna Paula; Pinto-Neto, Nelson; Dias Pinto Vitenti, Sandro, Consistent Scalar and Tensor Perturbation Power Spectra in Single Fluid Matter Bounce with Dark Energy Era, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.083517
[33] Raveendran, Rathul Nath; Sriramkumar, L., Viable scalar spectral tilt and tensor-to-scalar ratio in near-matter bounces, Phys. Rev. D, 100 (2019) · Zbl 1527.83164 · doi:10.1103/PhysRevD.100.083523
[34] Agullo, Ivan; Olmedo, Javier; Sreenath, V., Predictions for the Cosmic Microwave Background from an Anisotropic Quantum Bounce, Phys. Rev. Lett., 124 (2020) · doi:10.1103/PhysRevLett.124.251301
[35] Singh, Parampreet; Vandersloot, Kevin; Vereshchagin, G. V., Non-singular bouncing universes in loop quantum cosmology, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.043510
[36] Agullo, Ivan; Kranas, Dimitrios; Sreenath, V., Large scale anomalies in the CMB and non-Gaussianity in bouncing cosmologies, Class. Quant. Grav., 38 (2021) · Zbl 1486.83124 · doi:10.1088/1361-6382/abc521
[37] Agullo, Ivan; Bolliet, Boris; Sreenath, V., Non-Gaussianity in Loop Quantum Cosmology, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.066021
[38] Schwarz, Dominik J.; Copi, Craig J.; Huterer, Dragan; Starkman, Glenn D., CMB Anomalies after Planck, Class. Quant. Grav., 33 (2016) · doi:10.1088/0264-9381/33/18/184001
[39] Planck Collaboration; Akrami, Y., Planck 2018 results. IX. Constraints on primordial non-Gaussianity, Astron. Astrophys., 641, A9 (2020) · doi:10.1051/0004-6361/201935891
[40] Planck Collaboration; Aghanim, N., Planck 2018 results. I. Overview and the cosmological legacy of Planck, Astron. Astrophys., 641, A1 (2020) · doi:10.1051/0004-6361/201833880
[41] Planck Collaboration; Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6 (2020) · doi:10.1051/0004-6361/201833910
[42] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys., 594, A17 (2016) · doi:10.1051/0004-6361/201525836
[43] R. Durrer, The cosmic microwave background, Cambridge University Press, Cambridge, U.K. (2020). · Zbl 0897.58062
[44] Di Dio, Enea; Durrer, Ruth; Maartens, Roy; Montanari, Francesco; Umeh, Obinna, The Full-Sky Angular Bispectrum in Redshift Space, JCAP, 04 (2019) · doi:10.1088/1475-7516/2019/04/053
[45] Lesgourgues, Julien, The Cosmic Linear Anisotropy Solving System (CLASS) I: overview (2011)
[46] Blas, Diego; Lesgourgues, Julien; Tram, Thomas, The Cosmic Linear Anisotropy Solving System (CLASS) II: approximation schemes, JCAP, 07 (2011) · doi:10.1088/1475-7516/2011/07/034
[47] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XV. Gravitational lensing, Astron. Astrophys., 594, A15 (2016) · doi:10.1051/0004-6361/201525941
[48] D.N. Limber, The analysis of counts of the extragalactic nebulae in terms of a fluctuating density field, Astrophys. J.117 (1953) 134. · doi:10.1086/145672
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.