×

Non-singular rotating black hole with a time delay in the center. (English) Zbl 1337.83034

Summary: As proposed by C. Bambi and L. Modesto [Phys. Lett., B 721, No. 4–5, 329–334 (2013; Zbl 1309.83058)], rotating non-singular black holes can be constructed via the Newman-Janis algorithm. Here we show that if one starts with a modified Hayward black hole with a time delay in the centre, the algorithm succeeds in producing a rotating metric, but curvature divergences reappear. To preserve finiteness, the time delay must be introduced directly at the level of the non-singular rotating metric. This is possible thanks to the deformation of the inner stationarity limit surface caused by the regularisation, and in more than one way. We outline three different possibilities, distinguished by the angular velocity of the event horizon. Along the way, we provide additional results on the Bambi-Modesto rotating Hayward metric, such as the structure of the regularisation occurring at the centre, the behaviour of the quantum gravity scale alike an electric charge in decreasing the angular momentum of the extremal black hole configuration, or details on the deformation of the ergosphere.

MSC:

83C57 Black holes
83C75 Space-time singularities, cosmic censorship, etc.
83C15 Exact solutions to problems in general relativity and gravitational theory
83C40 Gravitational energy and conservation laws; groups of motions

Citations:

Zbl 1309.83058

References:

[1] Hayward, S.A.: Formation and evaporation of regular black holes. Phys. Rev. Lett. 96, 31103 (2006). arxiv:gr-qc/0506126 · doi:10.1103/PhysRevLett.96.031103
[2] Frolov, V. P.: Information loss problem and a ‘black hole’ model with a closed apparent horizon. (2014). arXiv:1402.5446
[3] Hossenfelder, S., Smolin, L.: Conservative solutions to the black hole information problem. Phys. Rev. D81 (2010). arxiv:0901.3156
[4] Barrau, A., Rovelli, C.: Planck star phenomenology. Phys. Lett. B 739, 405 (2014). arXiv:1404.5821 · doi:10.1016/j.physletb.2014.11.020
[5] Barrau, A., Rovelli, C., Vidotto, F.: Fast radio bursts and white hole signals. Phys. Rev. D90(12), 127503 (2014). arXiv:1409.4031
[6] Barrau, A., Bolliet, B., Vidotto, F., Weimer, C.: Phenomenology of bouncing black holes in quantum gravity: a closer look. arxiv:1507.05424 · Zbl 1421.83063
[7] Bardeen, J.M.: Non-singular general-relativistic gravitational collapse. In: Fock, V. A., et al. (eds.) GR5, Abstracts of the 5th international conference on gravitation and the theory of relativity. University Press, Tbilisi, 9-13 September 1968 · Zbl 1388.83390
[8] Frolov, V.P., Vilkovisky, G.A.: Spherically symmetric collapse in quantum gravity. Phys. Lett. B 106, 307-313 (1981) · doi:10.1016/0370-2693(81)90542-6
[9] Roman, T.A., Bergmann, P.G.: Stellar collapse without singularities? Phys. Rev. D 28, 1265-1277 (1983) · doi:10.1103/PhysRevD.28.1265
[10] Casadio, R.: Quantum gravitational fluctuations and the semiclassical limit. Int. J. Mod. Phys D9, 511-529 (2000). arXiv:gr-qc/9810073
[11] Mazur, P.O., Mottola, E.: Gravitational condensate stars: an alternative to black holes. arxiv:gr-qc/0109035 · Zbl 1242.83067
[12] Dymnikov, I.: Cosmological term as a source of mass. Class. Quant. Grav. 19, 725-740 (2002). arXiv:gr-qc/0112052 · Zbl 1005.83051 · doi:10.1088/0264-9381/19/4/306
[13] Visser, M., Barcelo, C., Liberati, S., Sonego, S.: Small, dark, and heavy: But is it a black hole? arXiv:0902.0346. [PoSBHGRS,010(2008)] · Zbl 1294.83034
[14] Falls, K., Litim, D.F., Raghuraman, A.: Black holes and asymptotically safe gravity. Int. J. Mod. Phys. A 27, 1250019 (2012). arXiv:1002.0260 · Zbl 1247.83080 · doi:10.1142/S0217751X12500194
[15] Modesto, L., Nicolini, P.: Charged rotating noncommutative black holes. Phys. Rev. D 82, 104035 (2010). arXiv:1005.5605 · doi:10.1103/PhysRevD.82.104035
[16] Bambi, C., Modesto, L.: Rotating regular black holes. Phys. Lett. B 721, 329-334 (2013). arXiv:1302.6075 · Zbl 1309.83058 · doi:10.1016/j.physletb.2013.03.025
[17] Bambi, C., Malafarina, D., Modesto, L.: Non-singular quantum-inspired gravitational collapse. Phys. Rev. D 88, 044009 (2013). arXiv:1305.4790 · doi:10.1103/PhysRevD.88.044009
[18] Haggard, H.M., Rovelli, C.: Black hole fireworks: quantum-gravity effects outside the horizon spark black to white hole tunneling. arxiv:1407.0989 · Zbl 1335.83014
[19] Mersini-Houghton, L.: Backreaction of hawking radiation on a gravitationally collapsing star i: Black holes?, PLB30496 Phys. Lett. B, 16 September 2014 (06, 2014). arxiv:1406.1525
[20] De Lorenzo, T., Pacilio, C., Rovelli, C., Speziale, S.: On the effective metric of a Planck star. Gen. Relativ. Gravit. 47(4), 41 (2015). arXiv:1412.6015 · Zbl 1317.83034 · doi:10.1007/s10714-015-1882-8
[21] Ayon-Beato, E., Garcia, A.: The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B493, 149-152 (2000). arXiv:gr-qc/0009077 · Zbl 0976.81127 · doi:10.1016/S0370-2693(00)01125-4
[22] Falls, K., Litim, D.F., Raghuraman, A.: Black holes and asymptotically safe gravity. Int. J. Mod. Phys. A 27, 1250019 (2012). arXiv:1002.0260 · Zbl 1247.83080 · doi:10.1142/S0217751X12500194
[23] Saueressig, F., Alkofer, N., D’Odorico, G., Vidotto, F.: Black holes in asymptotically safe gravity, PoS FFP14 (2015) 174. arxiv:1503.06472 · Zbl 0142.46305
[24] Bambi, C., Malafarina, D., Modesto, L.: Terminating black holes in asymptotically free quantum gravity. Eur. Phys. J. C 74, 2767 (2014). arXiv:1306.1668 · doi:10.1140/epjc/s10052-014-2767-9
[25] Frolov, V.P.: Mass-gap for black hole formation in higher derivative and ghost free gravity. Phys. Rev. Lett. 115(5), 051102 (2015). arXiv:1505.00492 · doi:10.1103/PhysRevLett.115.051102
[26] Modesto, L.: Loop quantum black hole. Class. Quant. Grav. 23, 5587-5602 (2006). arXiv:gr-qc/0509078 · Zbl 1101.83033 · doi:10.1088/0264-9381/23/18/006
[27] Ashtekar, A., Bojowald, M.: Black hole evaporation: a paradigm. Class. Quant. Grav. 22, 3349-3362 (2005). arXiv:gr-qc/0504029 · Zbl 1160.83332 · doi:10.1088/0264-9381/22/16/014
[28] Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006). arXiv:gr-qc/0602086 · Zbl 1153.83417 · doi:10.1103/PhysRevLett.96.141301
[29] Rovelli, C., Vidotto, F.: Planck stars. Int. J. Mod. Phys. D 23(12), 1442026 (2014). arXiv:1401.6562 · doi:10.1142/S0218271814420267
[30] Newman, E.T., Janis, A.I.: Note on the Kerr spinning particle metric. J. Math. Phys. 6, 915-917 (1965) · Zbl 0142.46305 · doi:10.1063/1.1704350
[31] Caravelli, F., Modesto, L.: Spinning loop black holes. Class. Quant. Grav. 27, 245022 (2010). arXiv:1006.0232 · Zbl 1206.83096 · doi:10.1088/0264-9381/27/24/245022
[32] Ghosh, S.G., Amir, M.: Horizon structure of rotating Bardeen black hole and particle acceleration. arxiv:1506.04382
[33] Bjerrum-Bohr, N.E.J., Donoghue, J.F., Holstein, B.R.: Quantum corrections to the Schwarzschild and Kerr metrics. Phys. Rev. D 68, 084005 (2003). arXiv:hep-th/0211071. [Erratum: Phys. Rev. D71,069904(2005)] · doi:10.1103/PhysRevD.68.084005
[34] Adamo, T., Newman, E.T.: The Kerr-Newman metric: a review. Scholarpedia 9, 31791 (2014). arXiv:1410.6626 · doi:10.4249/scholarpedia.31791
[35] Drake, S.P., Szekeres, P.: Uniqueness of the Newman-Janis algorithm in generating the Kerr-Newman metric. Gen. Relativ. Gravit. 32, 445-458 (2000). arXiv:gr-qc/9807001 · Zbl 1004.83020 · doi:10.1023/A:1001920232180
[36] Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (2004) · Zbl 1179.83005
[37] Debnath, U.: Accretion and evaporation of modified hayward black hole. Eur. Phys. J. C75 (2015), no. 3 129. arxiv:1503.01645
[38] Bambi, C.: Testing the Kerr black hole hypothesis. Mod. Phys. Lett. A 26, 2453-2468 (2011). arXiv:1109.4256 · doi:10.1142/S0217732311036929
[39] Bambi, C.: Testing the Bardeen metric with the black hole candidate in Cygnus X-1. Phys. Lett. B 730, 59-62 (2014). arXiv:1401.4640 · doi:10.1016/j.physletb.2014.01.037
[40] Smailagic, A., Spallucci, E.: ’Kerrr’ black hole: the Lord of the String. Phys. Lett. B 688, 82-87 (2010). arXiv:1003.3918 · doi:10.1016/j.physletb.2010.03.075
[41] Gibbons, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738-2751 (1977) · doi:10.1103/PhysRevD.15.2738
[42] Bardeen, J.M., Press, W.H., Teukolsky, S.A.: Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347 (1972) · doi:10.1086/151796
[43] Segre, C.: Sulla teoria e sulla class delle omografie in uno spazio lineare ad un numero qualunque di dimensioni. Transeunti Acc. Lincei VIII(III), 19 (1883-84)
[44] Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time, vol. 1, 20th edn. Cambridge University Press, Cambridge (1973) · Zbl 0265.53054 · doi:10.1017/CBO9780511524646
[45] Neves, J.C.S., Saa, A.: Regular rotating black holes and the weak energy condition. Phys. Lett. B 734, 44-48 (2014). arXiv:1402.2694 · Zbl 1380.83157 · doi:10.1016/j.physletb.2014.05.026
[46] Perez, A.: No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox. Class. Quant. Grav. 32(8), 084001 (2015). arXiv:1410.7062 · Zbl 1328.83066 · doi:10.1088/0264-9381/32/8/084001
[47] Bianchi, E., De Lorenzo, T., Smerlak, M.: Entanglement entropy production in gravitational collapse: covariant regularization and solvable models. JHEP 06, 180 (2015). arXiv:1409.0144 · Zbl 1388.83390
[48] Smerlak, M.: Black holes and reversibility. Talk given at the International Loop Quantum Gravity Seminar, 2015. web link · Zbl 1328.83066
[49] De Lorenzo, T.: Investigating Static and Dynamic Non-Singular Black Holes. Master thesis in theoretical physics, University of Pisa, 2014 · Zbl 1206.83096
[50] Carlitz, R.D., Willey, R.S.: The lifetime of a black hole. Phys. Rev. D 36, 2336 (1987) · doi:10.1103/PhysRevD.36.2336
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.