×

On some notions of good reduction for endomorphisms of the projective line. (English) Zbl 1285.14033

Based on the investigation by L. Szpiro and T. J. Tucker [Pure Appl. Math. Q. 4, No. 3, 715–728 (2008; Zbl 1168.14020)], the authors consider an endomorphism \(\Phi\) of the projective line \(\mathbb{P}^1_{\overline{\mathbb{Q}}}\) over the algebraic closure of \(\mathbb{Q}\), of degree \(\geq 2\) defined over a number field \(K\). Let \(v\) be a non-archimedean valuation of \(K\). L. Szpiro and T. J. Tucker introduced the notions of an endomorphism having critically good reduction, as opposed to simple good reduction, and investigated the relations between both notions.
The authors in this article improve the investigation, and show that for an endomorphism \(\Phi\) of the projective line of degree \(\geq 2\) such that the reduced map \(\Phi_v\) is separable at a finite place \(v\) of \(K\), the following are equivalent: (a) \(\Phi\) has critically good reduction at \(v\) and (b) \(\Phi\) has simple good reduction at \(v\) and \(\#\Phi(\mathcal{R}_\Phi)=\#(\Phi(\mathcal{R}_\Phi))_v\), where \(\mathcal{R}_\Phi\) is the set of ramification points of the map \(\Phi\).

MSC:

14H25 Arithmetic ground fields for curves

Citations:

Zbl 1168.14020

References:

[1] Beckmann S.: Ramified primes in the field of moduli of branched coverings of curves. J. Algebra 125(1), 236-255 (1989) · Zbl 0698.14024 · doi:10.1016/0021-8693(89)90303-7
[2] Bombieri E., Gubler W.: Heights in Diophantine Geometry, New Mathematical Monographs, vol. 4. Cambridge University Press, Cambridge (2006) · Zbl 1115.11034
[3] Canci J.K.: Finite orbits for rational functions. Indag. Math. (N.S.) 18(2), 203-214 (2007) · Zbl 1129.14025 · doi:10.1016/S0019-3577(07)80017-6
[4] Dwork B., Robba P.: On natural radii of p-adic convergence. Trans. Am. Math. Soc. 256, 199-213 (1979) · Zbl 0426.12013
[5] Fulton W.: Hurwitz schemes and irreducibility of moduli algebraic curves. Ann. Math. 90(2), 542-575 (1969) · Zbl 0194.21901 · doi:10.2307/1970748
[6] Grothendieck, A.: Géométrie formelle et géomérie algébrique, Séminaire Bourbaki, exposé 182 (1958-1959) · Zbl 0194.21901
[7] Hartshorne R.: Algebraic Geometry, GTM 52. Springer, New York (1977) · Zbl 0367.14001 · doi:10.1007/978-1-4757-3849-0
[8] Liu Q.: Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics. Oxford University Press, USA (2002) · Zbl 0996.14005
[9] Morandi P.: Field and Galois Theory, GTM 167. Springer, New York (1996) · Zbl 0865.12001 · doi:10.1007/978-1-4612-4040-2
[10] Morton P., Silverman J.H.: Rational periodic points of rational functions. Internat. Math. Res. Notices 2, 97-110 (1994) · Zbl 0819.11045 · doi:10.1155/S1073792894000127
[11] Quarteroni A., Sacco R., Saleri F.: Numerical Mathematics, 2nd edn. Springer, New York (2007) · Zbl 1136.65001
[12] Shafarevich, I.R.: Algebraic Number Fields. In: Proceedings of International Congress of Mathematicians (Stockholm, 1962), pp. 163-176. Inst. Mittag-Leffler, Djursholm (1963) · Zbl 0126.06902
[13] Silverman J.H.: The Arithmetic of Dynamical Systems, GTM 241. Springer, New York (2007) · Zbl 1130.37001 · doi:10.1007/978-0-387-69904-2
[14] Szpiro, L., Tucker, T.: A Shafarevich-Faltings Theorem for Rational Functions. Pure Appl. Math. Q. 4(3), part 2, 715-728 (2008) · Zbl 1168.14020
[15] Zannier U.: On Davenport’s bound for the degree f3−g2 and Riemann’s existence theorem. Acta Arith. 71(2), 107-137 (1995) · Zbl 0840.11015
[16] Zannier U.: On the reduction modulo p of an absolutely irreducible polynomial f(x, y). Arch. Math. 68(2), 129-138 (1997) · Zbl 0977.11011 · doi:10.1007/s000130050041
[17] Zannier U.: Good reduction for certain covers \[{\mathbb{R}^1 \to \mathbb{R}^1} \]. Israel J. Math. 124, 93-114 (2001) · Zbl 1015.14010 · doi:10.1007/BF02772609
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.