×

Nondeterministic automatic complexity of overlap-free and almost square-free words. (English) Zbl 1334.68173

Summary: J. Shallit and M.-W. Wang [J. Autom. Lang. Comb. 6, No. 4, 537–554 (2001; Zbl 1004.68077)] studied deterministic automatic complexity of words. They showed that the automatic Hausdorff dimension \(I(\mathbf t)\) of the infinite Thue word satisfies \(1/3\leq I(\mathbf t)\leq 1/2\). We improve that result by showing that \(I(\mathbf t)= 1/2\). We prove that the nondeterministic automatic complexity \(A_N(x)\) of a word \(x\) of length \(n\) is bounded by \(b(n):=\lfloor n/2\rfloor + 1\). This enables us to define the complexity deficiency \(D(x)=b(n)-A_N(x)\). If \(x\) is square-free then \(D(x)=0\). If \(x\) is almost square-free in the sense of A. S. Fraenkel and R. J. Simpson [Electron. J. Comb. 2, Research paper R2, 9 p. (1995; Zbl 0816.11007)], or if \(x\) is a overlap-free binary word such as the infinite Thue-Morse word, then \(D(x)\leq 1\). On the other hand, there is no constant upper bound on \(D\) for overlap-free words over a ternary alphabet, nor for cube-free words over a binary alphabet.
The decision problem whether \(D(x)\geq d\) for given \(x\), \(d\) belongs to \(\mathrm{NP}\cap \mathrm{E}\).

MSC:

68R15 Combinatorics on words
68Q30 Algorithmic information theory (Kolmogorov complexity, etc.)
68Q45 Formal languages and automata

References:

[1] Cristian S. Calude, Kai Salomaa, and Tania K. Roblot. Finite state complexity. Theoret. Comput. Sci., 412(41):5668-5677, 2011. · Zbl 1235.68088
[2] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic randomness and complex ity. Theory and Applications of Computability. Springer, New York, 2010. · Zbl 1221.68005
[3] Aviezri S. Fraenkel and R. Jamie Simpson. How many squares must a binary sequence contain? Electron. J. Combin., 2:Research Paper 2, approx. 9 pp. (electronic), 1995. · Zbl 0816.11007
[4] A. O. Gelfond. Sur les nombres qui ont des propri´et´es additives et multiplicatives donn´ees. Acta Arith., 13:259-265, 1967/1968. · Zbl 0155.09003
[5] Kayleigh Hyde. Nondeterministic finite state complexity. Master’s thesis, University of Hawaii at Manoa, U.S.A., 2013.http://math.hawaii.edu/home/theses/MA_2013_Hyde.pdf.
[6] R. C. Lyndon and M. P. Sch¨utzenberger. The equation a M= b N c P in a free group. Michigan Math. J., 9:289-298, 1962. · Zbl 0106.02204
[7] Johannes F. Morgenbesser, Jeffrey Shallit, and Thomas Stoll. Thue-Morse at multi ples of an integer. J. Number Theory, 131(8):1498-1512, 2011. · Zbl 1246.11159
[8] Jeffrey Shallit. A Second Course in Formal Languages and Automata Theory. Cam bridge University Press, New York, NY, USA, 1 edition, 2008. · Zbl 1163.68025
[9] Jeffrey Shallit and Ming-Wei Wang. Automatic complexity of strings. J. Autom. Lang. Comb., 6(4):537-554, 2001. 2nd Workshop on Descriptional Complexity of Automata, Grammars and Related Structures (London, ON, 2000). · Zbl 1004.68077
[10] R. O. Shelton and R. P. Soni. Chains and fixing blocks in irreducible binary sequences. Discrete Math., 54(1):93-99, 1985. · Zbl 0561.05015
[11] A. Thue. ¨Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Skrifter I Mat.-Nat. Kl., Christiania, 1:1-67, 1912. · JFM 43.0162.07
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.