×

Inverse scattering by a random periodic structure. (English) Zbl 1452.78015

The authors deal with the scattering of a time-harmonic electromagnetic plane wave by a periodic structure. They present an efficient numerical method for solving the inverse scattering problem to determine a random periodic interface or obstacle. This is done by combining the Monte Carlo technique for sampling the probability space, a continuation method with respect to the wavenumber, and the Karhunen-Loève expansion of the random structure. Numerical results are included, and illustrate the reliability and efficiency of the method.

MSC:

78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
65C30 Numerical solutions to stochastic differential and integral equations
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
62F15 Bayesian inference

References:

[1] T. Arens and A. Kirsch, The factorization method in inverse scattering from periodic structures, Inverse Problems, 19 (2003), pp. 1195-1211. · Zbl 1330.35519
[2] G. Bao, A unique theorem for an inverse problem in periodic diffractive optics, Inverse Problems, 10 (1994), pp. 335-340. · Zbl 0805.35144
[3] G. Bao and E. Bonnetier, Optimal design of periodic diffractive structures, Appl. Math. Optim., 43 (2001), pp. 103-116. · Zbl 0978.49004
[4] G. Bao, Z. Chen, and H. Wu, Adaptive finite element method for diffraction gratings, J. Opt. Soc. Am. A, 22 (2005), pp. 1106-1114.
[5] G. Bao, L. Cowsar, and W. Masters, Mathematical Modeling in Optical Science, Front. Appl. Math. 22, SIAM, Philadelphia, PA, 2001. · Zbl 0964.00050
[6] G. Bao, D. C. Dobson, and J. A. Cox, Mathematical studies in rigorous grating theory, J. Opt. Soc. Am. A, 12 (1995), pp. 1029-1042.
[7] G. Bao and A. Friedman, Inverse problems for scattering by periodic structures, Arch. Ration. Mech. Anal., 132 (1995), pp. 49-72. · Zbl 0845.35131
[8] G. Bao and P. Li, Near-field imaging of infinite rough surfaces in dielectric media, SIAM J. Imaging Sci., 7 (2014), pp. 867-899. · Zbl 1297.78008
[9] G. Bao, P. Li, and J. Lv, Numerical solution of an inverse diffraction grating problem from phaseless data, J. Opt. Soc. Am. A, 30 (2013), pp. 293-299.
[10] G. Bao, P. Li, and H. Wu, A computational inverse diffraction grating problem, J. Opt. Soc. Am. A, 29 (2012), pp. 394-399.
[11] G. Bao, H. Zhang, and J. Zou, Unique determination of periodic polyhedral structures by scattered electromagnetic fields, Trans. Amer. Math. Soc., 363 (2011), pp. 4527-4551. · Zbl 1222.35207
[12] G. Bruckner and J. Elschner, A two-step algorithm for the reconstruction of perfectly reflecting periodic profiles, Inverse Problems, 19 (2003), pp. 315-329. · Zbl 1221.35445
[13] O. P. Bruno and F. Reitich, Numerical solution of diffraction problems: A method of variation of boundaries, J. Opt. Soc. Am. A, 10 (1993), pp. 1168-1175.
[14] Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), pp. 799-826. · Zbl 1049.78018
[15] M. Dashti and A. M. Stuart, The Bayesian approach to inverse problems, in Handbook of Uncertainty Quantification, Springer, Cham, 2017, pp. 311-428.
[16] D. Dobson, Optimal design of periodic antireflective structures for the Helmholtz equation, European J. Appl. Math, 4 (1993), pp. 321-340. · Zbl 0806.35175
[17] J. Elschner and G. Schmidt, Numerical solution of optimal design problems for binary gratings, J. Comput. Phys., 146 (1998), pp. 603-626. · Zbl 0922.65055
[18] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer, Dordrecht, 1996. · Zbl 0859.65054
[19] X. Feng, J. Lin, and D. P. Nicholls, An efficient Monte Carlo-transformed field expansion method for electromagnetic wave scattering by random rough rurfaces, Commun. Comput. Phys., 23 (2018), pp. 685-705. · Zbl 1488.78003
[20] R. Firoozabadi, E. L. Miller, C. M. Rappaport, and A. W. Morgenthaler, Subsurface sensing of buried objects under a randomly rough surface using scattered electromagnetic field data, IEEE Trans. Geosci. Remote Sens., 45 (2007), pp. 104-117.
[21] F. Hettlich, Iterative regularization schemes in inverse scattering by periodic structures, Inverse Problems, 18 (2002), pp. 701-714. · Zbl 1002.35124
[22] K. Ito and F. Reitich, A high-order perturbation approach to profile reconstruction: I. Perfectly conducting gratings, Inverse Problems, 15 (1999), pp. 1067-1085. · Zbl 0935.35175
[23] J. T. Johnson, L. Tsang, R. T. Shin, K. Pak, C. H. Chan, A. Ishimaru, and Y. Kuga, Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces: A comparison of Monte Carlo simulations with experimental data, IEEE Trans. Antennas Propag., 44 (1996), pp. 748-756.
[24] A. Kirsch, Uniqueness theorems in inverse scattering theory for periodic structures, Inverse Problems, 10 (1994), pp. 145-152. · Zbl 0805.35155
[25] A. A. Maradudin, ed., Light Scattering and Nanoscale Surface Roughness, Springer, New York, 2007.
[26] J. C. Nedelec and F. Starling, Integral equation methods in a quasi-periodic diffraction problem for the time harmonic maxwells equations, SIAM J. Math. Anal., 22 (1991), pp. 1679-1701. · Zbl 0756.35004
[27] J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces, AdamHilger, Bristol, 1991. · Zbl 0753.73004
[28] R. Petit, Electromagnetic Theory of Gratings, Topics Current Phys. 22, Springer-Verlag, Heidelberg, 1980.
[29] A. Rathsfeld, G. C. Hsiao, and J. Elschner, Grating profile reconstruction based on finite elements and optimization techniques, SIAM J. Appl. Math., 64 (2003), pp. 525-545. · Zbl 1059.35165
[30] F. Shi, M. J. S. Lowe, and R. V. Craster, Recovery of correlation function of internal random rough surfaces from diffusely scattered elastic waves, J. Mech. Phys. Solids, 99 (2017), pp. 483-494.
[31] T. J. Sullivan, Introduction to Uncertainty Quantification, Springer, Cham, 2015. · Zbl 1336.60002
[32] L. Yan and T. Zhou, Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems, J. Comput. Phys., 381 (2019), pp. 110-128. · Zbl 1451.62033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.