×

Preconditioned Krylov subspace and GMRHSS iteration methods for solving the nonsymmetric saddle point problems. (English) Zbl 1452.65055

Summary: In the present paper, we propose a separate approach as a new strategy to solve the saddle point problem arising from the stochastic Galerkin finite element discretization of Stokes problems. The preconditioner is obtained by replacing the (1,1) and (1,2) blocks in the RHSS preconditioner by others well chosen and the parameter \(\alpha\) in \((2,2)\)-block of the RHSS preconditioner by another parameter \(\beta\). The proposed preconditioner can be used as a preconditioner corresponding to the stationary itearative method or to accelerate the convergence of the generalized minimal residual method (GMRES). The convergence properties of the GMRHSS iteration method are derived. Meanwhile, we analyzed the eigenvalue distribution and the eigenvectors of the preconditioned matrix. Finally, numerical results show the effectiveness of the proposed preconditioner as compared with other preconditioners.

MSC:

65F10 Iterative numerical methods for linear systems
65F08 Preconditioners for iterative methods
65F50 Computational methods for sparse matrices
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs

Software:

IFISS
Full Text: DOI

References:

[1] Arnoldi, WE, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math., 9, 17-29 (1951) · Zbl 0042.12801 · doi:10.1090/qam/42792
[2] Bai, Z-Z; Golub, GH; Lu, L-Z; Yin, J-F, Block triangular and skew-Hermitian splitting methods for positive-definite linear systems, SIAM J. Sci. Comput., 26, 844-863 (2004) · Zbl 1079.65028 · doi:10.1137/S1064827503428114
[3] Bai, Z-Z; Golub, GH; Pan, J-Y, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98, 1-32 (2004) · Zbl 1056.65025 · doi:10.1007/s00211-004-0521-1
[4] Bai, Z-Z; Wang, Z-Q, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 428, 2900-2932 (2008) · Zbl 1144.65020 · doi:10.1016/j.laa.2008.01.018
[5] Bai, Z-Z; Benzi, M., Regularized HSS iteration methods for saddle-point, BIT Numer. Math., 57, 287-311 (2017) · Zbl 1367.65048 · doi:10.1007/s10543-016-0636-7
[6] Benzi, M.; Wathen, JA, Some preconditioning techniques for saddle point problems. Model Order Reduction: Theory, Res. Aspects and Appl., 13, 195-211 (2004) · Zbl 1152.65425
[7] Benzi, M.; Golub, GH; Liesen, J., Numerical solution of saddle point problems, Acta Numerica., 14, 1-137 (2005) · Zbl 1115.65034 · doi:10.1017/S0962492904000212
[8] Benzi, M.; Simoncini, V., On the eigenvalues of a class of saddle point matrices, Numer. Math., 103, 173-196 (2006) · Zbl 1103.65033 · doi:10.1007/s00211-006-0679-9
[9] Bellalij, M.; Jbilou, K.; Sadok, H., New convergence results on the global GMRES method for diagonalizable matrices, J. Comput. Appl. Math., 219, 350-358 (2008) · Zbl 1196.65068 · doi:10.1016/j.cam.2007.09.016
[10] Benner, P.; Saak, J.; Stoll, M.; Weichelt, HK, Efficient solution of large-scale saddle point systems arising in Riccati-based boundary feedback stabilization of incompressible stokes flow, SIAM J. Sci. Comput., 35, S150-S170 (2013) · Zbl 1290.76059 · doi:10.1137/120881312
[11] Bissuel, A., Allaire, G., Daumas, L., Chalot, F., Mallet, M.: Linear systems with multiple right-hand sides with GMRES, an application to aircraft design. ECCOMAS Congress (2016)
[12] Bouyouli, R.; Jbilou, K.; Sadaka, R.; Sadok, H., Convergence proprieties of some block Krylov subspace methods for multiple linear systems, J. Comput. Appl. Math., 196, 498-511 (2006) · Zbl 1100.65024 · doi:10.1016/j.cam.2005.09.017
[13] Cao, Z-H, Augmentation block preconditioners for saddle point-type matrices with singular (1,1) blocks, Linear Algebra Appl., 15, 515-533 (2008) · Zbl 1212.65146 · doi:10.1002/nla.572
[14] Dollar, HS; Wathen, AJ, Approximate factorization constraint preconditioners for saddle point matrices, SIAM J. Sci. Comput., 27, 1555-1572 (2006) · Zbl 1105.65047 · doi:10.1137/04060768X
[15] Elman, HC; Silvester, DJ; Wathen, AJ, Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics (2005), Oxford: Oxford University Press, Oxford · Zbl 1083.76001
[16] Elman, HC; Ramage, A.; Silvester, DJ, Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow, ACM Trans. Math. Softw., 33, 2-14 (2007) · Zbl 1365.65326 · doi:10.1145/1236463.1236469
[17] Elbouyahyaoui, L.; Messaoudi, A.; Sadok, H., Algebraic properties of the block GMRES and block Arnoldi methods, Elect Trans Numer Analysis., 33, 207-220 (2009) · Zbl 1188.65031
[18] Ernst, OG; Powell, CE; Silvester, DJ; Ullmann, E., Efficient solvers for a linear stochastic Galerkin mixed formulation of diffusion problems with random data, SIAM J. Sci. Comput., 31, 1424-1447 (2009) · Zbl 1187.35298 · doi:10.1137/070705817
[19] Gould, N.; Orban, D.; Rees, T., Projected Krylov methods for saddle-point system, SIAM J. Matrix Anal. Appl., 35, 1329-1343 (2014) · Zbl 1312.65043 · doi:10.1137/130916394
[20] Huang, Z-G; Wang, G-L; LG, Xu,Z; Cui, J-J, A generalized variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems, Numer. Algor., 75, 1161-1191 (2017) · Zbl 1376.65033 · doi:10.1007/s11075-016-0236-2
[21] Jbilou, K.; Messaoudi, A.; Sadok, H., Global FOM and GMRES algorithms for matrix equation, Appl. Numer. Math., 31, 49-43 (1999) · Zbl 0935.65024 · doi:10.1016/S0168-9274(98)00094-4
[22] Jiang, M-Q; Cao, Y.; Yao, L-Q, On parametrized block triangular preconditioners for generalized saddle point problems, Appl. Math. Comput., 216, 1777-1789 (2010) · Zbl 1194.65049
[23] Murphy, MF; Golub, GH; Wathen, AJ, A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput., 21, 1969-1972 (2000) · Zbl 0959.65063 · doi:10.1137/S1064827599355153
[24] Pestana, J.; Wathen, AJ, Combination preconditioning of saddle point systems for positive definiteness, Linear Algebra Appl., 20, 785-808 (2012) · Zbl 1313.65052 · doi:10.1002/nla.1843
[25] Pestana, J.; Wathen, AJ, On the choice of preconditioner for minimum residual methods for non-Hermitian matrices, J. Comput. Appl. Math., 249, 57-68 (2013) · Zbl 1285.65020 · doi:10.1016/j.cam.2013.02.020
[26] Pestana, J.; Wathen, AJ, Natural preconditioning and iterative methods for saddle point systems, SIAM Rev., 57, 71-91 (2015) · Zbl 1338.65078 · doi:10.1137/130934921
[27] Pestana, J.; Wathen, AJ, A preconditioned MINRES method for nonsymmetric Toeplitz matrices, SIAM J. Matrix Anal. Appl., 36, 273-288 (2015) · Zbl 1315.65034 · doi:10.1137/140974213
[28] Powell, CE; Silvester, DJ, Preconditioning steady-state Navier-Stokes equations with random data, SIAM J. Sci. Comput., 34, A2482-A2506 (2012) · Zbl 1256.35216 · doi:10.1137/120870578
[29] Rozloznik, M.; Simoncini, V., Krylov subspace methods for saddle point problems with indefinite preconditioning, SIAM J. Matrix Anal. Appl., 24, 368-391 (2002) · Zbl 1021.65016 · doi:10.1137/S0895479800375540
[30] Saad, Y.; Schultz, M., GMRES: A generalised minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869 (1986) · Zbl 0599.65018 · doi:10.1137/0907058
[31] Sadok, H., Analysis of the convergence of the minimal and the orthogonal residual methods, Numer. Algor., 40, 101-115 (2005) · Zbl 1086.65031 · doi:10.1007/s11075-005-1533-3
[32] Salkuyeh, DK; Masoudi, M., A new relaxed HSS preconditioner for saddle point problems, Numer. Algor., 74, 781-795 (2017) · Zbl 1367.65044 · doi:10.1007/s11075-016-0171-2
[33] Schöberl, J.; Zulehner, W., Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl., 29, 752-773 (2007) · Zbl 1154.65029 · doi:10.1137/060660977
[34] Stoll, M.; Wathen, A., Combination preconditioning and the Bramble-Pasciak preconditioner, SIAM J. Matrix Anal. Appl., 30, 582-608 (2008) · Zbl 1167.65358 · doi:10.1137/070688961
[35] Zhang, J-L; Gu, C-Q, A variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems, BIT Numer. Math., 56, 587-604 (2016) · Zbl 1342.65106 · doi:10.1007/s10543-015-0590-9
[36] Zulehner, W., Analysis of iterative methods for saddle point problems: a unified approach, Math. Comput., 71, 479-50 (2001) · Zbl 0996.65038 · doi:10.1090/S0025-5718-01-01324-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.