×

Mathematical analysis of a model of chemotaxis arising from morphogenesis. (English) Zbl 1382.35171

Summary: We consider non-negative solution couples \((u,v)\) of \[ \begin{cases} u_t=u_{xx}-\chi(\frac uvv_x)_x-\lambda u,\\ v_t=1-v+u,\end{cases} \] with positive parameters \(\chi\) and \(\lambda\), where the spatial domain is the interval \((0,1)\). This system appears as a limit case of a model for morphogenesis proposed by T. Bollenbach et al. [“Morphogen transport in epithelia”, Phys. Rev. E 75, No. 1, Article ID 011901, 16 p. (2007; doi:10.1103/PhysRevE.75.011901)]. Under suitable boundary conditions, modeling the presence of a morphogen source at \(x=0\), we prove the existence of a global and bounded weak solution using an approximation by problems where diffusion is introduced in the ordinary differential equation. Moreover, we prove the convergence of the solution to the unique steady state provided that \(\chi\) is small and \(\lambda\) is large enough.
Numerical simulations both illustrate these results and give rise to further conjectures on the solution behavior that go beyond the rigorously proved statements.

MSC:

35M33 Initial-boundary value problems for mixed-type systems of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35B35 Stability in context of PDEs
92C17 Cell movement (chemotaxis, etc.)
35K55 Nonlinear parabolic equations
35B40 Asymptotic behavior of solutions to PDEs

References:

[1] Entchev, Gradient formation of the TGF {\(\beta\)} homolog Dpp, Cell 103 pp 981– (2000) · doi:10.1016/S0092-8674(00)00200-2
[2] Entchev, Morphogen gradient formation and vesicular trafficking, Traffic 3 pp 98– (2002) · doi:10.1034/j.1600-0854.2002.030203.x
[3] Kerszberg, Mechanism for positional signalling by morphogen transport: A theoretical study, Journal of Theoretical Biology 191 pp 103– (1998) · doi:10.1006/jtbi.1997.0575
[4] Krzy\.zanowski, Well-posedness and convergence to the steady state for a model of morphogen transport, SIAM Journal on Mathematical Analysis 40 (5) pp 1725– (2008) · Zbl 1178.35071 · doi:10.1137/070711608
[5] Krzy\.zanowski, Mathematical models of receptor-mediated transport of morphogens, Mathematical Models and Methods in Applied Sciences 20 (11) pp 2021– (2010) · Zbl 1207.35197 · doi:10.1142/S0218202510004866
[6] Lander, Aggregation of a distributed source morphogen gradient degradation, Studies in Applied Mathematics 114 (4) pp 343– (2005) · Zbl 1145.35402 · doi:10.1111/j.0022-2526.2005.01556.x
[7] Lander, Do morphogen gradients arise by diffusion?, Developmental Cell 2 pp 785– (2002) · doi:10.1016/S1534-5807(02)00179-X
[8] Lander, Internalization and end flux in morphogen gradient degradation, Journal of Computational and Applied Mathematics 190 (1-2) pp 232– (2006) · Zbl 1082.92011 · doi:10.1016/j.cam.2004.11.054
[9] Turing, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London 237 pp 37– (1952) · Zbl 1403.92034 · doi:10.1098/rstb.1952.0012
[10] Bollenbach, Morphogen transport in epithelia, Physical Review E 75 pp 011901– (2007) · doi:10.1103/PhysRevE.75.011901
[11] Merkin, A mathematical model for the spread of morphogens with density dependent chemosensitivity, Nonlinearity 18 (6) pp 2745– (2005) · Zbl 1078.92010 · doi:10.1088/0951-7715/18/6/018
[12] Levine, A system of reaction-diffusion equations arising in the theory of reinforced random walks, SIAM Journal on Applied Mathematics 57 (3) pp 683– (1997) · Zbl 0874.35047 · doi:10.1137/S0036139995291106
[13] Othmer, Aggregation, blowup, and collapse: The ABC’s of taxis in reinforced random walks, SIAM Journal on Applied Mathematics 57 (4) pp 1044– (1997) · Zbl 0990.35128 · doi:10.1137/S0036139995288976
[14] Hillen, A user’s guide to PDE models for chemotaxis, Journal of Mathematical Biology 58 (1-2) pp 183– (2009) · Zbl 1161.92003 · doi:10.1007/s00285-008-0201-3
[15] Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Mathematical Methods in the Applied Sciences 34 (2) pp 176– (2011) · Zbl 1291.92018 · doi:10.1002/mma.1346
[16] Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Mathematische Nachrichten 283 (11) pp 1664– (2010) · Zbl 1205.35037 · doi:10.1002/mana.200810838
[17] Aida, Chemotaxis and growth system with singular sensitivity function, Nonlinear Analysis RWA 6 (2) pp 323– (2005) · Zbl 1066.92004 · doi:10.1016/j.nonrwa.2004.08.011
[18] Horstmann, Boundedness vs. blow-up in a chemotaxis system, Journal of Differential Equations 215 (1) pp 52– (2005) · Zbl 1085.35065 · doi:10.1016/j.jde.2004.10.022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.