×

Limiting weak-type behavior for singular integral and maximal operators. (English) Zbl 1096.42005

Let \(T\) be a singular integral operator in \({\mathbb R}^n\) with kernel \(K(x)= {\Omega(x)\over |x|^n}\), where \(\Omega\) is homogeneous of degree \(0\), bounded, and \(\Omega\) satisfies the conditions \[ \int_{S^{n-1}}\Omega(x) \,d\sigma(x)=0 \] and \[ \int_{S^{n-1}}|\Omega(x-\delta\xi)-\Omega(x)| \,d\sigma(x)\leq c n\delta\int_{S^{n-1}}|\Omega(x)| \,d\sigma(x) \] for \(\xi\in S^{n-1}\), \(0<\delta<\frac{1}{n}\), where \(c\) is independent of \(n\).
The author proves that for \(f\in L^1({\mathbb R}^n)\), \(f\geq 0\), \[ \lim_{\lambda\rightarrow 0} \lambda\;m\{x\in{\mathbb R}^n: |Tf(x)|>\lambda\}= {1\over n}\int_{S^{n-1}} |\Omega(x)| \,d\sigma(x) \|f\|_1. \] For the maximal operator \(M\), the corresponding result is \[ \lim_{\lambda\rightarrow 0} \lambda m\{x\in{\mathbb R}^n: |Mf(x)|>\lambda\}= \|f\|_1. \] This paper is a continuation of some earlier work of the author [Indiana Univ. Math. J. 53, No. 2, 533–555 (2004; Zbl 1064.42011)].

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory

Citations:

Zbl 1064.42011
Full Text: DOI

References:

[1] Albert Baernstein II, Some sharp inequalities for conjugate functions, Indiana Univ. Math. J. 27 (1978), no. 5, 833 – 852. · Zbl 0372.42007 · doi:10.1512/iumj.1978.27.27055
[2] Rodrigo Bañuelos, Martingale transforms and related singular integrals, Trans. Amer. Math. Soc. 293 (1986), no. 2, 547 – 563. · Zbl 0591.60045
[3] Rodrigo Bañuelos and Gang Wang, Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms, Duke Math. J. 80 (1995), no. 3, 575 – 600. · Zbl 0853.60040 · doi:10.1215/S0012-7094-95-08020-X
[4] Rodrigo Bañuelos and Gang Wang, Davis’s inequality for orthogonal martingales under differential subordination, Michigan Math. J. 47 (2000), no. 1, 109 – 124. · Zbl 0967.60051 · doi:10.1307/mmj/1030374671
[5] Burgess Davis, On the weak type (1,1) inequality for conjugate functions, Proc. Amer. Math. Soc. 44 (1974), 307 – 311. · Zbl 0259.42016
[6] Burgess Davis, On the distributions of conjugate functions of nonnegative measures, Duke Math. J. 40 (1973), 695 – 700. · Zbl 0271.60090
[7] Javier Duoandikoetxea, Fourier analysis, Graduate Studies in Mathematics, vol. 29, American Mathematical Society, Providence, RI, 2001. Translated and revised from the 1995 Spanish original by David Cruz-Uribe. · Zbl 0969.42001
[8] Javier Duoandikoetxea and José L. Rubio de Francia, Estimations indépendantes de la dimension pour les transformées de Riesz, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 7, 193 – 196 (French, with English summary). · Zbl 0577.42015
[9] Alberto Fiorenza, A note on the spherical maximal function, Rend. Accad. Sci. Fis. Mat. Napoli (4) 54 (1987), 77 – 83 (1988) (English, with Italian summary). · Zbl 1145.42303
[10] Tadeusz Iwaniec and Gaven Martin, Riesz transforms and related singular integrals, J. Reine Angew. Math. 473 (1996), 25 – 57. · Zbl 0847.42015
[11] Prabhu Janakiraman, Weak-type estimates for singular integrals and the Riesz transform, Indiana Univ. Math. J. 53 (2004), no. 2, 533 – 555. · Zbl 1064.42011 · doi:10.1512/iumj.2004.53.2372
[12] Soulaymane Korry, Fixed points of the Hardy-Littlewood maximal operator, Collect. Math. 52 (2001), no. 3, 289 – 294. · Zbl 0989.42005
[13] S. K. Pichorides, On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov, Studia Math. 44 (1972), 165 – 179. (errata insert). Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, II. · Zbl 0238.42007
[14] Gilles Pisier, Riesz transforms: a simpler analytic proof of P.-A. Meyer’s inequality, Séminaire de Probabilités, XXII, Lecture Notes in Math., vol. 1321, Springer, Berlin, 1988, pp. 485 – 501. · Zbl 0645.60061 · doi:10.1007/BFb0084154
[15] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[16] E. M. Stein, Some results in harmonic analysis in \?\(^{n}\), for \?\to \infty , Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 1, 71 – 73. · Zbl 0515.42018
[17] E. M. Stein, Problems in harmonic analysis related to curvature and oscillatory integrals, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 196 – 221.
[18] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. · Zbl 0821.42001
[19] E. M. Stein and J.-O. Strömberg, Behavior of maximal functions in \?\(^{n}\) for large \?, Ark. Mat. 21 (1983), no. 2, 259 – 269. · Zbl 0537.42018 · doi:10.1007/BF02384314
[20] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. · Zbl 0232.42007
[21] E. M. Stein and Guido Weiss, An extension of a theorem of Marcinkiewicz and some of its applications, J. Math. Mech. 8 (1959), 263 – 284. · Zbl 0084.10801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.