×

Fractional differential quadrature techniques for fractional order Cauchy reaction-diffusion equations. (English) Zbl 1530.65134

Summary: This paper aims to explore and apply differential quadrature based on different test functions to find an efficient numerical solution of fractional order Cauchy reaction-diffusion equations (CRDEs). The governing system is discretized through time and space via novel techniques of differential quadrature method and the fractional operator of Caputo kind. Two problems are offered to explain the accuracy of the numerical algorithms. To verify the reliability, accuracy, efficiency, and speed of these methods, computed results are compared numerically and graphically with the exact and semi-exact solutions. Then mainly, we deal with absolute errors and \(L_\infty\) errors to study the convergence of the presented methods. For each technique, MATLAB Code is designed to solve these problems with the error reaching \(\leq1 \times 10^{-5}\). In addition, a parametric analysis is presented to discuss influence of fractional order derivative on results. The achieved solutions prove the viability of the presented methods and demonstrate that these methods are easy to implement, effective, highly accurate, and appropriate for studying fractional partial differential equations emerging in fields related to science and engineering.
{© 2023 John Wiley & Sons Ltd.}

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35K57 Reaction-diffusion equations
35R11 Fractional partial differential equations

Software:

Matlab; R
Full Text: DOI

References:

[1] AhmadH, KhanTA, AhmadI, StanimirovicPS, ChuYM. A new analyzing method for nonlinear time fractional Cauchy reaction‐diffusion model equations. Res Phys. 2020;19(8):462‐474.
[2] GulH, AlrabaiahH, AliS, ShahK, MuhammadS. Computation of solution to fractional order partial reaction diffusion equations. J Adv Res. 2020;25:31‐38. doi:10.1016/j.jare.2020.04.021
[3] RagusaMA. Commutators of fractional integral operators on vanishing‐Morrey spaces. J Global Optim. 2018;40(1‐3):361‐368. · Zbl 1143.42020
[4] GuarigliaE. Riemann zeta fractional derivative‐functional equation and link with primes. Adv Differ Eq. 2019;1(1):1‐15. doi:10.1186/s13662‐019‐2202‐5 · Zbl 1459.26011
[5] LiC, DaoX, GuoP. Fractional derivatives in complex planes. Nonlin Anal: Theory Method Appl. 2009;71(5‐6):1857‐1869. doi:10.1016/j.na.2009.01.021 · Zbl 1173.26305
[6] GuarigliaE, SilvestrovS. A functional equation for the Riemann Zeta fractional derivative. AIP Conf Proc. 2017;1798(1):020146. doi:10.1063/1.4972738
[7] AbbasMI, RagusaMA. On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function. Symmetry. 2021;13(2):264. doi:10.3390/sym13020264
[8] GuarigliaE. Fractional calculus, zeta functions and Shannon entropy. Open Math. 2021;19(1):87‐100. doi:10.1515/math‐2021‐0010 · Zbl 1475.11151
[9] AbbasMI, RagusaMA. Solvability of Langevin equations with two Hadamard fractional derivatives via Mittag‐Leffler functions. Appl Anal. 2020;101(9):3231‐3245. doi:10.1080/00036811.2020.1839645 · Zbl 1500.34004
[10] AreshiM, ZidanAM, ShahRS, NonlaoponK. A modified techniques of fractional‐order Cauchy‐reaction diffusion equation via Shehu transform. J Funct Spaces. 2021;2021:5726822. · Zbl 1510.35364
[11] ValizadehS, MalekA, BorhanifaraA. Compact ADI method for two‐dimensional Riesz space fractional diffusion equation. Filomat. 2021;35(5):1543‐1554.
[12] SaadatmandiA, DehghanM. A new operational matrix for solving fractional‐order differential equations. Comput Math Appl. 2010;59(3):1326‐1336. doi:10.1016/j.camwa.2009.07.006 · Zbl 1189.65151
[13] Ul RahmanJ, LuD, SulemanM, HeJH, RamzanM. He-Elzaki method for spatial diffusion of biological population. Fractals. 2019;27(5):112‐121. doi:10.1142/S0218348X19500695 · Zbl 1434.35277
[14] NuruddeenRI, NassAM. Aboodh decomposition method and its application in solving linear and nonlinear heat equations. Eur J Adv Eng Technol. 2016;3(7):34‐37.
[15] EltayebH, AbdeldaimE. Sumudu decomposition method for solving fractional delay dierential equations. Res Appl Math. 2017;1(1):1‐13.
[16] GuptaV, GuptaS. Application of homotopy analysis method for solving nonlinear Cauchy problem. Surv Math Appl. 2012;7(1):105‐116. · Zbl 1399.35137
[17] MomaniS, Abu ArqubO, Abu HammadMM, Abo‐HammourZS. A residual power series technique for solving systems of initial value problems. Appl Math Inf Sci. 2016;10(2):765‐775. doi:10.18576/amis/100237
[18] DelkhoshM, ParandK. Generalized pseudospectral method: theory and applications. J Comput Sci. 2019;34:11‐32. doi:10.1016/j.jocs.2019.04.007
[19] ParandK, DelkhoshM. An effective numerical method for solving the nonlinear singular Lane‐Emden type equations of various orders. Jurnal Teknologi. 2017;79(1):1‐9.
[20] HashimI, NooraniMSM, Al‐HadidiMRS. Solving the generalized BurgersHuxley equation using the Adomian decomposition method. Math Comput Model. 2006;43(11‐12):1404‐1411. doi:10.1016/j.mcm.2005.08.017 · Zbl 1133.65083
[21] Daftardar‐GejjiV, JafariH. An iterative method for solving nonlinear functional equations. J Math Anal Appl. 2006;316(2):753‐763. doi:10.1016/j.jmaa.2005.05.009 · Zbl 1087.65055
[22] BaiZ, ZhangS, SunS, YinC. Monotone iterative method for fractional differential equations. Electron J Differ Equ. 2016;6:1‐8. · Zbl 1329.34051
[23] Al‐SawoorAJ, Al‐AmrMO. Numerical solution of a reaction-diffusion system with fast reversible reaction by using Adomian’s decomposition method and He’s variational iteration method. Al‐Rafidain J Comput Sci Math. 2012;9(2):243‐257.
[24] LiuF, ZhuangP, AnhV, TurnerI, BurrageK. Stability and convergence of the difference methods for the space‐time fractional advection‐diffusion equation. Appl Math Comput. 2007;191(1):12‐20. doi:10.1016/j.amc.2006.08.162 · Zbl 1193.76093
[25] MeerschaertMM, TadjeranC. Finite difference approximations for fractional advection‐dispersion flow equations. J Comput Appl Math. 2004;172(1):65‐77. doi:10.1016/j.cam.2004.01.033 · Zbl 1126.76346
[26] QinJ, WangT. A compact locally one‐dimensional finite difference method for nonhomogeneous parabolic differential equations. Int J Numer Methods Biomed Eng. 2011;27(1):128‐142. doi:10.1002/cnm.1299 · Zbl 1210.65158
[27] ElsaidA. The variational iteration method for solving Riesz fractional partial differential equations. Comput Math Appl. 2010;60(7):1940‐1947. doi:10.1016/j.camwa.2010.07.027 · Zbl 1205.65287
[28] DengW. Finite element method for the space and time fractional Fokker‐Planck equation. SIAM J Numer Anal. 2008;47(1):204‐226. doi:10.1137/080714130 · Zbl 1416.65344
[29] AlesemiM, IqbalN, AbdoMS. Novel investigation of fractional‐order Cauchy‐reaction diffusion equation involving Caputo‐Fabrizio operator. J Funct Space. 2022;2022:1‐14. doi:10.1155/2022/4284060 · Zbl 1485.35372
[30] ZhuXG, NieYF, ZhangWW. An efficient differential quadrature method for fractional advection-diffusion equation. Nonlinear Dyn. 2017;90(3):1807‐1827. doi:10.1007/s11071017‐3765‐x · Zbl 1380.35165
[31] MockaryS, BabolianE, VahidiAR. A fast numerical method for fractional partial differential equations. Adv Diff Eq. 2019;2019(1):452. doi:10.1186/s13662‐019‐2390‐z · Zbl 1485.65110
[32] HashmiMS, WajihaM, YaoSW, GhaffarA, Mustafa Inc. Cubic spline based differential quadrature method: a numerical approach for fractional Burger equation. Res Phys. 2021;26:104415. doi:10.1016/j.rinp.2021.104415
[33] BhrawyAH, AlofiAS, Ezz‐EldienSS. A quadrature tau method for fractional differential equations with variable coefficients. Appl Math Lett. 2011;24(12):2146‐2152. doi:10.1016/j.aml.2011.06.016 · Zbl 1269.65068
[34] BotaC, CaruntuB, TucuD, LapadatM, PascaMS. A least squares differential quadrature method for a class of nonlinear partial differential equations of fractional order. Mathematics. 2020;8(8):1336. doi:10.3390/math8081336
[35] SaeedU, RehmanM, DinQ. Differential quadrature method for nonlinear fractional partial differential equations. Eng Comput. 2018;35(6):2349‐2366. doi:10.1108/EC‐04‐2018‐0179
[36] RagbO, MatbulyMS, CivalekO. Free vibration of irregular plates via indirect differential quadrature and singular convolution techniques. Eng Anal Bound Elem. 2021;128:66‐79. doi:10.1016/j.enganabound.2021.03.023 · Zbl 1521.74135
[37] RagbO, MohamedM, MatbulyMS, CivalekO. An accurate numerical approach for studying perovskite solar cells. Int J Energy Res. 2021;5(11):16456‐16477. doi:10.1002/er.6892
[38] RagbO, MatbulyMS. Nonlinear vibration analysis of elastically supported multi‐layer composite plates using efficient quadrature techniques. Int J Comput Method Eng Sci Mech. 2021;23(3):1‐18.
[39] RagbO, SalahM, MatbulyMS, AmerRM. Vibration analysis of piezoelectric composite plate resting on nonlinear elastic foundations using sinc and discrete singular convolution differential quadrature techniques. Math Probl Eng. 2020;2020:1‐22. doi:10.1155/2020/7592302 · Zbl 1459.74076
[40] RagbO, MatbulyMS. Vibration analysis of elastically supported plates using differential quadrature techniques. J Eng Appl Sci. 2020;23(3):1‐18.
[41] RagbO, MatbulyMS. Efficient quadrature solution for composite plates with variable thickness resting on nonuniform and nonlinear elastic foundation. Int J Eng Res Technol. 2019;8(12):95‐107.
[42] RagbO, MohamedM, MatbulyMS. Vibration analysis of magneto‐electro‐thermo nanobeam resting on nonlinear elastic foundation using sinc and discrete singular convolution differential quadrature method. Modern Applied Science. 2019;13(7):49‐79. doi:10.5539/mas.v13n7p49
[43] RagbO, SalahM, MatbulyMS, AmerRM. Vibration analysis of piezoelectric composite using sinc and discrete singular convolution differential quadrature techniques. J Eng Appl Sci. 2019;14(17):6540‐6553. doi:10.36478/jeasci.2019.6540.6553
[44] RagbO, MohamedM, MatbulyMS. Free vibration of a piezoelectric nanobeam resting on nonlinear Winkler‐Pasternak foundation by quadrature methods. Heliyon. 2019;5(6):e01856. doi:10.1016/j.heliyon.2019.e01856
[45] RagbO, MohamedM, MatbulyMS, CivalekO. Sinc and discrete singular convolution for analysis of three‐layer composite of perovskite solar cell. Int J Energy Res. 2022;46(4):4279‐4300. doi:10.1002/er.7426
[46] BellomoN, De AngelisE, GrazianoL, RomanoA. Solution of nonlinear problems in applied sciences by generalized collocation methods and mathematica. Comput Math Appl. 2001;41(10‐11):1343‐1363. doi:10.1016/S0898‐1221(01)00101‐8 · Zbl 1058.65110
[47] El‐GamelM, BehirySH, HashishH. Numerical method for the solution of special nonlinear fourth‐order boundary value problems. Appl Math Comput. 2003;145(2‐3):717‐734. doi:10.1016/S0096‐3003(03)00269‐8 · Zbl 1033.65065
[48] DockeryJD. Numerical solution of travelling waves for reaction‐diffusion equations via the Sinc-Galerkin method. In: BowersK (ed.), LundJ (ed.), eds. Computation and Control: Proceedings of the Bozeman Conference, Bozeman, Montana. Birkhäuser; 1993:95‐113. · Zbl 0829.65116
[49] El‐GamelM, ZayedA. A comparison between the wavelet‐Galerkin and the sinc‐Galerkin methods in solving non homogeneous heat equations. In: ZuhairN (ed.), OtmarS (ed.), eds. Series, Inverse Problems, Image Analysis, and Medical Imaging. Vol.313. AMS; 2002. · Zbl 1028.65107
[50] YinG. Sinc‐collocation method with orthogonalization for singular Poisson‐like problems. Math Comput. 1994;62(205):21‐40. doi:10.1090/S0025‐5718‐1994‐1203738‐7 · Zbl 0796.65121
[51] CarlsonTS, DockeryJ, LundJ. A sinc‐collocation method for initial value problems. Math Comput. 1997;66(217):215‐235. doi:10.1090/S0025‐5718‐97‐00789‐8 · Zbl 0854.65054
[52] NgCHW, ZhaoYB, WeiGW. Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates. Comput Methods Appl Mech Eng. 2004;193(23‐26):2483‐2506. doi:10.1016/j.cma.2004.01.013 · Zbl 1067.74600
[53] WeiGW. Discrete singular convolution for the solution of the Fokker-Planck equation. J Chem Phys. 1999;110(18):8930‐8942. doi:10.1063/1.478812
[54] WeiGW. A unified method for solving Maxwell’s equations. In: Proceedings of Asia Pacific Microwave Conference, Singapore; 1999:562‐565.
[55] WeiGW. Solving quantum eigenvalue problems by discrete singular convolution. J Phys B. 2000;33(3):343‐352. doi:10.1088/0953‐4075/33/3/304
[56] WeiGW. A unified approach for solving the Fokker-Planck equation. J Phys A. 2000;33:4935‐4953. · Zbl 0988.82047
[57] WeiGW, ZhaoYB, XiangY. A novel approach for the analysis of high frequency vibrations. J Sound Vib. 2002;257(2):207‐246. doi:10.1006/jsvi.2002.5055
[58] WeiGW. A new approach for solving some mechanical problems. Comput Methods Appl Mech Eng. 2001;190(15‐17):2017‐2030. doi:10.1016/S0045‐7825(00)00219‐X · Zbl 1013.74081
[59] WanDC, WeiGW. Discrete singular convolution‐finite subdomain method for the solution of incompressible viscous flows. J Comput Phys. 2002;180(1):229‐255. doi:10.1006/jcph.2002.7089 · Zbl 1130.76403
[60] WeiGW, ZhaoYB, XiangY. The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution. Int J MechSci. 2001;43(8):1731‐1746. doi:10.1016/S0020‐7403(01)00021‐2 · Zbl 1018.74017
[61] WeiGW. Discrete singular convolution for beam analysis. Eng Struct. 2001;23(9):1045‐1053. doi:10.1016/S0141‐0296(01)00016‐5
[62] HilalN, InjrouS, KarroumR. Exponential finite difference methods for solving Newell-Whitehead-Segel equation. Arab J Math. 2020;9(2):367‐379. doi:10.1007/s40065‐020‐00280‐3 · Zbl 1442.65160
[63] JiwariR, GuptaK, KumarV. Polynomial differential quadrature method for numerical solutions of the generalized Fitzhugh‐Nagumo equation with time‐dependent coefficients. Ain Shams Eng J. 2014;5(4):1343‐1350. doi:10.1016/j.asej.2014.06.005
[64] LesnicD. The decomposition method for Cauchy reaction-diffusion problems. Appl Math Lett. 2007;20(4):412‐418. doi:10.1016/j.aml.2006.05.006 · Zbl 1169.35304
[65] DehghanM, ShakeriF. Application of He’s variational iteration method for solving the Cauchy reaction-diffusion problem. J Comput Appl Math. 2008;214(2):435‐446. doi:10.1016/j.cam.2007.03.006 · Zbl 1135.65381
[66] BaeumerB, KovacsM, MeerschaertMM. Numerical solutions for fractional reaction-diffusion equations. Comput Math Appl. 2008;55(10):2212‐2226. doi:10.1016/j.camwa.2007.11.012 · Zbl 1142.65422
[67] YildirimA. Application of He’s homotopy perturbation method for solving the Cauchy reaction-diffusion problem. Comput Math Appl. 2009;57(4):612‐618. doi:10.1016/j.camwa.2008.11.003 · Zbl 1165.65398
[68] KhanA, LiaqatMI, YounisM, AlamA. Approximate and exact solutions to fractional order Cauchy reaction diffusion equations by new combine techniques. J Math. 2021;2021:1‐12. doi:10.1155/2021/5337255
[69] NourazarSS, Nazari‐GolshanA, NourazarM. On the closed form solutions of linear and nonlinear Cauchy reaction‐diffusion equations using the hybrid of Fourier transform and variational iteration method. Phys Int. 2011;2(1):8‐20. doi:10.3844/pisp.2011.8.20
[70] KumarS, KumarA, AbbasS, Al QurashiM, BaleanuD. A modified analytical approach with existence and uniqueness for fractional Cauchy reaction‐diffusion equations. Adv Differ Equ. 2020;2020(1):28. doi:10.1186/s13662‐019‐2488‐3 · Zbl 1487.35410
[71] ShuC. Differential Quadrature and Its Application in Engineering, Vol. 360. Springer‐Verlag; 2000. · Zbl 0944.65107
[72] MachadoJAT, BaleanuD, ChenW, SabatierJ. New trends in fractional dynamics. J Vib Control. 2014;20(7):963.
[73] BaleanuD (ed.), GüvençZB (ed.), Tenreiro MachadoJA (ed.) (Eds). New Trends in Nanotechnology and Fractional Calculus Applications. Springer; 2010. doi:10.1007/978‐90‐481‐3293‐5 · Zbl 1196.65021
[74] ChowdhuryMSH, HashimI. Analytical solution for Cauchy reaction‐diffusion problems by homotopy perturbation method. Sains Malays. 2010;39(3):495‐504. · Zbl 1197.65146
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.