×

Numerical solution of fractional advection-diffusion equation with a nonlinear source term. (English) Zbl 1319.35290

The paper analyzes a special kind of fractional advection-diffusion equation with a nonlinear source term. Stability and convergence are studied and numerical examples are discussed.

MSC:

35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Al-Khaled, K., Momani, S.: An approximate solution for a fractional diffusion-wave equation using the decomposition method. Appl. Math. Comput. 165, 473-483 (2005) · Zbl 1071.65135 · doi:10.1016/j.amc.2004.06.026
[2] Baeumer, B., Kovacs, M., Meerschaert, M. M.: Numerical solutions for fractional reaction-diffusion equations. Comput. Math. Applic. 55, 2212-2226 (2008) · Zbl 1142.65422 · doi:10.1016/j.camwa.2007.11.012
[3] Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations, to appear in BIT (2014) · Zbl 1306.65265
[4] Butcher, J.C.: The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods. Wiley, Chichester (1987) · Zbl 0616.65072
[5] Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods fundamentals in single domains. Springer, Berlin (2006) · Zbl 1093.76002
[6] Celik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743-1750 (2012) · Zbl 1242.65157 · doi:10.1016/j.jcp.2011.11.008
[7] Chen, C., Liu, F., Burrage, K.: Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput. 198, 754-769 (2008) · Zbl 1144.65057 · doi:10.1016/j.amc.2007.09.020
[8] Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial diffrential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. 26, 448-479 (2010) · Zbl 1185.65187
[9] Diethelm, K.: The analysis of fractional differential equations. Springer, Berlin (2010) · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2
[10] Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time-dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45, 572-591 (2007) · Zbl 1141.65089 · doi:10.1137/050642757
[11] Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558-576 (2006) · Zbl 1095.65118 · doi:10.1002/num.20112
[12] Ervin, V.J., Roop, J.P.: Variational solution of fractional advection-dispersion equations on bounded domains in ℝd \(\mathbb{R}^d\). Numer. Methods Partial Differ. Equ. 23, 256-281 (2007) · Zbl 1117.65169 · doi:10.1002/num.20169
[13] Eslahchi, M.R., Dehghan, M.: Application of Taylor series in obtaining the orthogonal operational matrix. Comput. Math. Applic. 61, 2596-2604 (2011) · Zbl 1221.33016 · doi:10.1016/j.camwa.2011.03.004
[14] Gautschi, W.: Construction of GaussChristoffel quadrature formulas. Math. Comput. 22, 251-270 (1968) · Zbl 0187.10603 · doi:10.1090/S0025-5718-1968-0228171-0
[15] Gautschi, W.: Orthogonal polynomials-construction theory and applications. J. Comput. Appl. Math. 1213, 61-67 (1985) · Zbl 0583.65011 · doi:10.1016/0377-0427(85)90007-X
[16] Golbabai, A., Sayevand, K.: Analytical modelling of fractional advection-dispersion equation defined in a bounded space domain. Math. Comput. Modelling 53, 1708-1718 (2011) · Zbl 1219.76035 · doi:10.1016/j.mcm.2010.12.046
[17] Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rule. Math. Comput. 23, 221-230 (1969) · Zbl 0179.21901 · doi:10.1090/S0025-5718-69-99647-1
[18] Guo, B.Y.: Spectral methods and their applications. World Scientific, Singapore (1998) · Zbl 0906.65110 · doi:10.1142/9789812816641
[19] Gu, Y.T., Zhuang, P.H.: Anomalous subdiffusion equations by the meshless collocation method. Aust. J. Mech. Eng. 10(1), 1-8 (2012) · doi:10.7158/M10-722.2012.10.1
[20] Gu, Y.T., Zhuang, P.H., Liu, Q.X.: An advanced meshless method for time fractional diffusion equation. Int. J. Comput. Methods 8(4), 653-665 (2011) · Zbl 1245.65133 · doi:10.1142/S0219876211002745
[21] Huang, Q., Huang, G., Zhan, H.: A finite element solution for the fractional advection-dispersion equation. Adv. Water Resour. 31, 1578-1589 (2008) · doi:10.1016/j.advwatres.2008.07.002
[22] Huang, F., Liu, F., et al.: The fundamental solution of the space-time fractional advection-dispersion equation. J. Appl. Math. Comput. 18, 339-350 (2005) · Zbl 1086.35003 · doi:10.1007/BF02936577
[23] Jiang, W., Lin, Y.: Approximate solution of the fractional advection-dispersion equation. Comput. Phy. Commun. 181, 557-561 (2010) · Zbl 1210.65168 · doi:10.1016/j.cpc.2009.11.004
[24] Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. J. Math. Anal. Applic. 389, 1117-1127 (2012) · Zbl 1234.35300 · doi:10.1016/j.jmaa.2011.12.055
[25] Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials Theirq-Analogues. Springer, Berlin (2010) · Zbl 1200.33012 · doi:10.1007/978-3-642-05014-5
[26] Liu, F., Anh, V., Turner, I., Zhuang, P.: Time fractional advection-dispersion equation. J. Appl. Math. Comput. 13, 233-245 (2003) · Zbl 1068.26006 · doi:10.1007/BF02936089
[27] Liu, F., Turner, I., Anh, V., Yang, Q., Burrage, K.: A numerical method for the fractional Fitzhugh-Nagumo monodomain model. ANZIAM 54, C608-C629 (2012) · Zbl 1390.65074
[28] Liu, F., Chen, S., Turner, I., Burrage, K., Anh, V., et al.: Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term. Cent. Eur. J. Phys. in press (2013)
[29] Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64, 2990-3007 (2012) · Zbl 1268.65124 · doi:10.1016/j.camwa.2012.01.020
[30] Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. App. Math. Comput. 191, 12-20 (2007) · Zbl 1193.76093 · doi:10.1016/j.amc.2006.08.162
[31] Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck Equation. J. Comput. Appl. Math. 166, 209-219 (2004) · Zbl 1036.82019 · doi:10.1016/j.cam.2003.09.028
[32] Liu, Q.X., Gu, Y.T., Zhuang, P.H., Liu, F., Nie, Y.F.: An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 48(1), 1-12 (2011) · Zbl 1377.76025 · doi:10.1007/s00466-011-0573-x
[33] Li, X., Xu, C.: A space time spectral methods for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108-2131 (2009) · Zbl 1193.35243 · doi:10.1137/080718942
[34] Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion equations. J. Comput. Appl. Math. 172, 65-77 (2004) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[35] Meerschaert, M.M., Tadjeran, C.: Finite difference approximation for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80-90 (2006) · Zbl 1086.65087 · doi:10.1016/j.apnum.2005.02.008
[36] Mohebbi, A., Abbaszadeh, M., Dehghan, M.: A high order and unconditionally stable scheme for the modified anomalous fractional subdifusion equation with a nonlinear source term. J. Comput. Phys. 240, 36-48 (2013) · Zbl 1287.65064 · doi:10.1016/j.jcp.2012.11.052
[37] Ozdemir, N., Avci, D., Billur Iskender, B.: The numerical solutions of a two-dimensional space-time Riesz-Caputo fractional diffusion equation. Int. J. Optim. Control Theor. Appl. 1, 17-26 (2011) · Zbl 1236.65133 · doi:10.11121/ijocta.01.2011.0028
[38] Pandey, R.K., Singh, O.P., Baranwal, V.K.: An analytic algorithm for the space-time fractional advection-dispersion equation. Comput. Phy. Commun. 182, 1134-1144 (2011) · Zbl 1217.65196 · doi:10.1016/j.cpc.2011.01.015
[39] Podlubny, I.: Fractional differential equations. Academic (1999) · Zbl 0924.34008
[40] Roop, J.P.: Numerical approximation of a one-dimensional space fractional advection-dispersion equation with boundary layer. Comput. Math. Appl. 56, 1808-1819 (2008) · Zbl 1152.76430 · doi:10.1016/j.camwa.2008.04.025
[41] Roop, J.P.: Variational solution of the fractional advection dispersion equation, PhD thesis (2004) · Zbl 1204.26013
[42] Saadatmandi, A., Dehghan, M., Azizi, M.R.: The sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simulat. 17, 593-601 (2012) · Zbl 1244.65114 · doi:10.1016/j.cnsns.2011.06.018
[43] Saadatmandi, A., Dehghan, M.: A tau approach for solution of the space fractional diffusion equation. Comput. Math. Appl. 62, 1135-1142 (2011) · Zbl 1228.65203 · doi:10.1016/j.camwa.2011.04.014
[44] El-Sayed, A.M.A., Behiry, S.H., Raslan, W.E.: Adomian’s decomposition method for solving an intermediate fractional advection-dispersion equation. Comput. Math. Appl. 59, 1759-1765 (2010) · Zbl 1189.35358 · doi:10.1016/j.camwa.2009.08.065
[45] Shen, J., Tang, T., Wang, L-L.: Spectral methods, algorithms, analysis and applications. Springer, Berlin (2011) · Zbl 1227.65117
[46] Shen, S., Anh, V., Turner, I.: The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J. Appl. Math. 73, 850-872 (2008) · Zbl 1179.37073 · doi:10.1093/imamat/hxn033
[47] Shen, S., Liu, F., Anh, V.: Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numer. Algor. 56, 383-403 (2011) · Zbl 1214.65046 · doi:10.1007/s11075-010-9393-x
[48] Sousa, E.: Finite difference approximations for a fractional advection-diffusion problem. J. Comput. Phys. 228, 4038-4054 (2009) · Zbl 1169.65126 · doi:10.1016/j.jcp.2009.02.011
[49] Su, L., Wang, W., Xu, Q.: Finite difference methods for fractional dispersion equations. Appl. Math. Comput. 216, 3329-3334 (2010) · Zbl 1193.65158 · doi:10.1016/j.amc.2010.04.060
[50] Wang, K., Wang, H.: A fast characteristic finite difference method for fractional advection-diffusion equations. Adv. Water Resour. 34, 810-816 (2011) · doi:10.1016/j.advwatres.2010.11.003
[51] Yang, Q., Moroney, T., Burrage, K., Turner, I., Liu, F.: Novel numerical methods for time-space fractional reaction-diffusion equations in two domains. J. ANZIAM 52, 461-473 (2004)
[52] Yang, Q., Turner, I., Liu, F.: Analytical and numerical solutions for the time and space-symmetric fractional diffusion equation. J. ANZIAM 50, 800-814 (2009) · Zbl 1359.35099
[53] Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200-218 (2010) · Zbl 1185.65200 · doi:10.1016/j.apm.2009.04.006
[54] Zheng, Y., Li, C., Zhao, Z.: A note on the finite element method for the space-fractional advection diffusion equation. Comput. Math. Appl. 59, 1718-1726 (2010) · Zbl 1189.65288 · doi:10.1016/j.camwa.2009.08.071
[55] Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760-1781 (2009) · Zbl 1204.26013 · doi:10.1137/080730597
[56] Zhuang, P., Gu, Y.T., Liu, F., Turner, I., Yarlagadda, P.K.: Time-dependent fractionaladvection-diffusion equations by an implicit MLS meshless method. Submitted to InternationalJournal for Numerical Methods in Engineering, (2011). (Also see the Technical reportr http://eprints.qut.edu.au/45619). · Zbl 1242.76262
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.