×

Local discontinuous Galerkin scheme for space fractional Allen-Cahn equation. (English) Zbl 1463.65301

Summary: This paper is concerned with the efficient numerical solution for a space fractional Allen-Cahn (AC) equation. Based on the features of the fractional derivative, we design and analyze a semi-discrete local discontinuous Galerkin (LDG) scheme for the initial-boundary problem of the space fractional AC equation. We prove the optimal convergence rates of the semi-discrete LDG approximation for smooth solutions. Finally, we test the accuracy and efficiency of the designed numerical scheme on a uniform grid by three examples. Numerical simulations show that the space fractional AC equation displays abundant dynamical behaviors.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
Full Text: DOI

References:

[1] Adams, Ra, Sobolev Spaces (1975), New York: Academic Press, New York · Zbl 0314.46030
[2] Allen, Sm; Cahn, Jw, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 1085-1095 (1979) · doi:10.1016/0001-6160(79)90196-2
[3] Achleitner, F., Kuehn, Ch.: Analysis and numerics of traveling waves for asymmetric fractional reaction-diffusion equations. arXiv:1405.5779v1 [math.NA] 22 (May 2014) · Zbl 1329.35330
[4] Baeumer, B.; Kovacsa, M.; Meerschaert, Mm, Numerical solutions for fractional reaction-diffusion equations, Comput. Math. Appl., 55, 2212-2226 (2008) · Zbl 1142.65422 · doi:10.1016/j.camwa.2007.11.012
[5] Bueno-Orovio, A.; Kay, D.; Burrage, K., Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT Numer. Math., 54, 937-954 (2014) · Zbl 1306.65265 · doi:10.1007/s10543-014-0484-2
[6] Cabré, X.; Roquejoffre, J-M, The influence of fractional diffusion in Fisher-KPP equations, Commun. Math. Phys., 320, 679-722 (2013) · Zbl 1307.35310 · doi:10.1007/s00220-013-1682-5
[7] Castillo, P.; Gómez, S., On the conservation of fractional nonlinear Schrödinger equation’s invariants by the local discontinuous Galerkin method, J Sci Comput., 5, 1-24 (2018) · Zbl 1406.65074
[8] Cifani, S.; Jakobsen, Er; Karlsen, Kh, The discontinuous Galerkin method for fractal conservation laws, IMA J. Numer. Anal., 31, 1090-1122 (2011) · Zbl 1256.65089 · doi:10.1093/imanum/drq006
[9] Cockburn, B.; Shu, C-W, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463 (1998) · Zbl 0927.65118 · doi:10.1137/S0036142997316712
[10] Castillo, P.; Cockburn, B.; Schötzau, D.; Schwab, C., Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comp., 71, 455-478 (2003) · Zbl 0997.65111 · doi:10.1090/S0025-5718-01-01317-5
[11] Deng, Wh; Hesthaven, Js, Local discontinuous Galerkin methods for fractional diffusion equations, ESAIM Math. Model. Numer. Anal., 47, 1845-1864 (2013) · Zbl 1282.35400 · doi:10.1051/m2an/2013091
[12] Du, Q.; Yang, J., Asymptotic compatible Fourier spectral approximations of nonlocal Allen-Cahn equations, SIAM J. Numer. Anal., 54, 1899-1919 (2016) · Zbl 1342.65198 · doi:10.1137/15M1039857
[13] Ervin, Vj; Roop, Jp, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Diff. Equ., 22, 558-576 (2006) · Zbl 1095.65118 · doi:10.1002/num.20112
[14] Feng, Xb; Prohl, A., Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numer. Math., 94, 33-65 (2003) · Zbl 1029.65093 · doi:10.1007/s00211-002-0413-1
[15] Feng, Xl; Song, H.; Tang, T.; Yang, J., Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation, Inverse Probl. Imaging, 7, 679-695 (2013) · Zbl 1273.65111 · doi:10.3934/ipi.2013.7.679
[16] Guo, Rh; Ji, Ly; Xu, Y., High order local discontinuous Galerkin methods for the Allen-Cahn equation: analysis and simulation, J. Comput. Math., 34, 135-158 (2016) · Zbl 1363.65162 · doi:10.4208/jcm.1510-m2014-0002
[17] Gottlieb, S.; Shu, C-W; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 89-112 (2001) · Zbl 0967.65098 · doi:10.1137/S003614450036757X
[18] Hou, T.; Tang, T.; Yang, J., Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations, J. Sci. Comput., 72, 1214-1231 (2017) · Zbl 1379.65063 · doi:10.1007/s10915-017-0396-9
[19] Ji, X.; Tang, Hz, High-order accurate Runge-Kutta (local) discontinuous Galerkin methods for one-and two-dimensional fractional diffusion equations, Numer. Math. Theor. Meth. Appl., 5, 333-358 (2012) · Zbl 1274.65271 · doi:10.4208/nmtma.2012.m1107
[20] Li, Z.; Wang, H.; Yang, Dp, A space-time fractional phase-field model with tunable sharpness and decay behavior and its efficient numerical simulation, J. Comput. Phys., 347, 20-38 (2017) · Zbl 1380.65306 · doi:10.1016/j.jcp.2017.06.036
[21] Mao, Zp; Kamiadakis, Ge, Fractional Burgers equation with nonlinear non-locality: spectral vanishing viscosity and local discontinuous Galerkin methods, J. Comput. Phys., 336, 143-163 (2017) · Zbl 1380.65280 · doi:10.1016/j.jcp.2017.01.048
[22] Podlubny, I., Fractional Differential Equations (1999), New York: Academic Press, New York · Zbl 0918.34010
[23] Shen, J.; Yang, Xf, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discret. Contin. Dyn. Syst., 28, 1669-1691 (2010) · Zbl 1201.65184 · doi:10.3934/dcds.2010.28.1669
[24] Shen, J.; Bao, W.; Du, Q., Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach, Multiscale Modeling and Analysis for Materials Simulation, 147-196 (2011), Singapore: National University of Singapore, Singapore
[25] Shen, J.; Tang, T.; Yang, J., On the maximum principle preserving schemes for the generalized Allen-Cahn equation, Commun. Math. Sci., 14, 1517-1534 (2016) · Zbl 1361.65059 · doi:10.4310/CMS.2016.v14.n6.a3
[26] Shu, C-W, High order WENO and DG methods for time-dependent convection-dominated PDEs: a brief survey of several recent developments, J. Comput. Phys., 316, 598-613 (2016) · Zbl 1349.65486 · doi:10.1016/j.jcp.2016.04.030
[27] Volpert, Va; Nec, Y.; Nepomnyashchy, Aa, Fronts in anomalous diffusion-reaction systems, Phil. Trans. R. Soc. A, 371, 20120179 (2013) · Zbl 1353.35181 · doi:10.1098/rsta.2012.0179
[28] Xu, Qw; Hesthaven, Js, Discontinuous Galerkin method for fractional convection-diffusion equations, SIAM J. Numer. Anal., 52, 405-423 (2014) · Zbl 1297.26018 · doi:10.1137/130918174
[29] Yang, Qq; Liu, Fw; Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 34, 200-218 (2010) · Zbl 1185.65200 · doi:10.1016/j.apm.2009.04.006
[30] Zeng, Fh; Li, Cp; Liu, Fw; Burrage, K.; Turner, I.; Anh, V., A Crank Nicolson ADI spectral method for a two dimensional Riesz space fractional nonlinear reaction diffusion equation, SIAM J. Numer. Anal., 52, 2599-2622 (2014) · Zbl 1382.65349 · doi:10.1137/130934192
[31] Zhuang, Ph; Liu, Fw; Anh, V.; Turner, I., Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47, 1760-1781 (2009) · Zbl 1204.26013 · doi:10.1137/080730597
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.