×

Numerical identification of multiparameters in the space fractional advection dispersion equation by final observations. (English) Zbl 1264.65118

Summary: This paper deals with an inverse problem for identifying multiparameters in 1D space fractional advection dispersion equation (FADE) on a finite domain with final observations. The parameters to be identified are the fractional order, the diffusion coefficient, and the average velocity in the FADE. The forward problem is solved by a finite difference scheme, and then an optimal perturbation regularization algorithm is introduced to determine the three parameters simultaneously. Numerical inversions are performed both with the accurate data and noisy data, and several factors having influences on realization of the algorithm are discussed. The inversion solutions are in good approximations to the exact solutions demonstrating the efficiency of the proposed algorithm.

MSC:

65L12 Finite difference and finite volume methods for ordinary differential equations
65L09 Numerical solution of inverse problems involving ordinary differential equations
35R11 Fractional partial differential equations
35R30 Inverse problems for PDEs

References:

[1] E. E. Adams and L. W. Gelhar, “Field study of dispersion in a heterogeneous aquifer: 2,” Spatial Moments Analysis, Water Resources Research, vol. 28, no. 12, pp. 3293-3307, 1992.
[2] D. A. Benson, The fractional advection-dispersion equation: development and application [Ph.D. thesis], University of Nevada, Reno, Nev, USA, 1998.
[3] Y. Hatano and N. Hatano, “Dispersive transport of ions in column experiments: an explanation of long-tailed profiles,” Water Resources Research, vol. 34, no. 5, pp. 1027-1033, 1998.
[4] Y. Pachepsky, D. Benson, and W. Rawls, “Simulating scale-dependent solute transport in soils with the fractional advective-dispersive equation,” Soil Science Society of American Journal, vol. 64, no. 4, pp. 1234-1243, 2000.
[5] B. Berkowitz, H. Scher, and S. E. Silliman, “Anomalous transport in laboratory-scale heterogeneous porous media,” Water Resources Research, vol. 36, no. 1, pp. 149-158, 2000.
[6] D. A. Benson, R. Schumer, M. M. Meerschaert, and S. W. Wheatcraft, “Fractional dispersion, Lévy motion, and the MADE tracer tests,” Transport in Porous Media, vol. 42, no. 1-2, pp. 211-240, 2001. · doi:10.1023/A:1006733002131
[7] L. Z. Zhou and H. M. Selim, “Application of the fractional advection-dispersion equations in porous media,” Soil Science Society of American Journal, vol. 67, no. 4, pp. 1079-1084, 2003.
[8] Y. W. Xiong, G. H. Huang, and Q. Z. Huang, “Modeling solute transport in one-dimensional homogeneous and heterogeneous soil columns with continuous time random walk,” Journal of Contaminant Hydrology, vol. 86, no. 3-4, pp. 163-175, 2006.
[9] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[10] M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for fractional advection-dispersion flow equations,” Journal of Computational and Applied Mathematics, vol. 172, no. 1, pp. 65-77, 2004. · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[11] F. Liu, V. Anh, and I. Turner, “Numerical solution of the space fractional Fokker-Planck equation,” Journal of Computational and Applied Mathematics, vol. 166, no. 1, pp. 209-219, 2004. · Zbl 1036.82019 · doi:10.1016/j.cam.2003.09.028
[12] F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, “Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation,” Applied Mathematics and Computation, vol. 191, no. 1, pp. 12-20, 2007. · Zbl 1193.76093 · doi:10.1016/j.amc.2006.08.162
[13] Q. Liu, F. Liu, I. Turner, and V. Anh, “Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method,” Journal of Computational Physics, vol. 222, no. 1, pp. 57-70, 2007. · Zbl 1112.65006 · doi:10.1016/j.jcp.2006.06.005
[14] B. Baeumer, M. Kovács, and M. M. Meerschaert, “Numerical solutions for fractional reaction-diffusion equations,” Computers & Mathematics with Applications, vol. 55, no. 10, pp. 2212-2226, 2008. · Zbl 1142.65422 · doi:10.1016/j.camwa.2007.11.012
[15] Q. Z. Huang, G. H. Huang, and H. B. Zhan, “A finite element solution for the fractional advection dispersion equation,” Advances in Water Resources, vol. 31, no. 12, pp. 1578-1589, 2008.
[16] Q. Yang, F. Liu, and I. Turner, “Numerical methods for fractional partial differential equations with Riesz space fractional derivatives,” Applied Mathematical Modelling, vol. 34, no. 1, pp. 200-218, 2010. · Zbl 1185.65200 · doi:10.1016/j.apm.2009.04.006
[17] J. Cheng, J. Nakagawa, M. Yamamoto, and T. Yamazaki, “Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation,” Inverse Problems, vol. 25, no. 11, Article ID 115002, 2009. · Zbl 1181.35322 · doi:10.1088/0266-5611/25/11/115002
[18] J. J. Liu and M. Yamamoto, “A backward problem for the time-fractional diffusion equation,” Applicable Analysis, vol. 89, no. 11, pp. 1769-1788, 2010. · Zbl 1204.35177 · doi:10.1080/00036810903479731
[19] Y. Zhang and X. Xu, “Inverse source problem for a fractional diffusion equation,” Inverse Problems, vol. 27, no. 3, Article ID 035010, 2011. · Zbl 1211.35280 · doi:10.1088/0266-5611/27/3/035010
[20] V. K. Tuan, “Inverse problem for fractional diffusion equation,” Fractional Calculus and Applied Analysis, vol. 14, no. 1, pp. 31-55, 2011. · Zbl 1273.35323 · doi:10.2478/s13540-011-0004-x
[21] B. T. Jin and W. Rundell, “An inverse problem for a one-dimensional time-fractional diffusion problem,” Inverse Problems, vol. 28, no. 7, Article ID 075010, 2012. · Zbl 1247.35203
[22] G. S. Li, W. J. Gu, and X. Z. Jia, “Numerical inversions for space-dependent diffusion coefficient in the time fractional diffusion equation,” Journal of Inverse and Ill-Posed Problems, vol. 20, no. 3, pp. 339-366, 2012. · Zbl 1279.35091
[23] H. Wei, W. Chen, H. Sun, and X. Li, “A coupled method for inverse source problem of spatial fractional anomalous diffusion equations,” Inverse Problems in Science and Engineering, vol. 18, no. 7, pp. 945-956, 2010. · Zbl 1204.65116 · doi:10.1080/17415977.2010.492515
[24] G. Chi, G. Li, and X. Jia, “Numerical inversions of a source term in the FADE with a Dirichlet boundary condition using final observations,” Computers & Mathematics with Applications, vol. 62, no. 4, pp. 1619-1626, 2011. · Zbl 1231.65158 · doi:10.1016/j.camwa.2011.02.029
[25] F. A. Rodrigues, H. R. B. Orlande, and G. S. Dulikravich, “Simultaneous estimation of spatially dependent diffusion coefficient and source term in a nonlinear 1D diffusion problem,” Mathematics and Computers in Simulation, vol. 66, no. 4-5, pp. 409-424, 2004. · Zbl 1050.65088 · doi:10.1016/j.matcom.2004.02.005
[26] G. S. Li, J. Cheng, D. Yao, H. L. Liu, and J. J. Liu, “One-dimensional equilibrium model and source parameter determination for soil-column experiment,” Applied Mathematics and Computation, vol. 190, pp. 1365-1374, 2007. · Zbl 1137.80014 · doi:10.1016/j.amc.2007.02.064
[27] G. S. Li, Y. J. Tan, D. Yao, X. Q. Wang, and H. L. Liu, “A nonlinear mathematical model for undisturbed soil-column experiment and source parameter identification,” Inverse Problems in Science and Engineering, vol. 16, no. 7, pp. 885-901, 2008. · Zbl 1351.80011
[28] G. S. Li, D. Yao, H. Y. Jiang, and X. Z. Jia, “Numerical inversion of a time-dependent reaction coefficient in a soil-column infiltrating experiment,” Computer Modeling in Engineering & Sciences, vol. 74, no. 2, pp. 83-107, 2011. · Zbl 1231.65160 · doi:10.3970/cmes.2011.074.083
[29] G. S. Li, D. Yao, and Y. Z. Wang, “Data reconstruction for a disturbed soil-column experimentusing an optimal perturbation regularization algorithm,” Journal of Applied Mathematics, vol. 2012, Article ID Article ID 732791, 16 pages, 2012.
[30] J. R. Cannon and P. DuChateau, “Structural identification of an unknown source term in a heat equation,” Inverse Problems, vol. 14, no. 3, pp. 535-551, 1998. · Zbl 0917.35156 · doi:10.1088/0266-5611/14/3/010
[31] B. Han, G. F. Feng, and J. Q. Liu, “A widely convergent generalized pulse-spectrum technique for the inversion of two-dimensional acoustic wave equation,” Applied Mathematics and Computation, vol. 172, no. 1, pp. 406-420, 2006. · Zbl 1088.65083 · doi:10.1016/j.amc.2005.02.011
[32] W. Chen, J. Cheng, J. Lin, and L. Wang, “A level set method to reconstruct the discontinuity of the conductivity in EIT,” Science in China A, vol. 52, no. 1, pp. 29-44, 2009. · Zbl 1181.35274 · doi:10.1007/s11425-008-0156-2
[33] J. Cheng, S. Lu, and M. Yamamoto, “Reconstruction of the Stefan-Boltzmann coefficients in a heat-transfer process,” Inverse Problems, vol. 28, no. 4, Article ID 045007, 2012. · Zbl 1236.35202 · doi:10.1088/0266-5611/28/4/045007
[34] C. W. Su, Numerical Methods and Applications of Inverse Problems in PDE, Northwestern Polytechnical University Press, Xi’an, China, 1995, (in Chinese).
[35] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer, New York, NY, USA, 1996. · Zbl 0865.35004 · doi:10.1007/978-1-4612-5338-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.