×

A circulant preconditioner for fractional diffusion equations. (English) Zbl 1297.65095

Summary: The implicit finite difference scheme with the shifted Grünwald formula, which is unconditionally stable, is employed to discretize fractional diffusion equations. The resulting systems are Toeplitz-like and then the fast Fourier transform can be used to reduce the computational cost of the matrix-vector multiplication. The preconditioned conjugate gradient normal residual method with a circulant preconditioner is proposed to solve the discretized linear systems. The spectrum of the preconditioned matrix is proven to be clustered around 1 if diffusion coefficients are constant; hence the convergence rate of the proposed iterative algorithm is superlinear. Numerical experiments are carried out to demonstrate that our circulant preconditioner works very well, even though for cases of variable diffusion coefficients.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
35R11 Fractional partial differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65F08 Preconditioners for iterative methods
65T50 Numerical methods for discrete and fast Fourier transforms
Full Text: DOI

References:

[1] Bai, J.; Feng, X., Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Proc., 16, 2492-2502 (2007) · Zbl 1119.76377
[2] Barrett, R.; Berry, M.; Chan, T.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; van der Vorst, H., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (1994), SIAM: SIAM Philadelphia
[3] Benson, D.; Wheatcraft, S. W.; Meerschaert, M. M., Application of a fractional advection-dispersion equation, Water Resour. Res., 36, 1403-1413 (2000)
[4] Benson, D.; Wheatcraft, S. W.; Meerschaert, M. M., The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 1413-1423 (2000)
[5] Beumer, B.; Kovács, M.; Meerschaert, M. M., Numerical solutions for fractional reaction-diffusion equations, Comput. Math. Appl., 55, 2212-2226 (2008) · Zbl 1142.65422
[6] Carreras, B. A.; Lynch, V. E.; Zaslavsky, G. M., Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence models, Phys. Plasma, 8, 5096-5103 (2001)
[7] Chan, R.; Jin, X., An Introduction to Iterative Toeplitz Solvers (2007), SIAM: SIAM Philadelphia · Zbl 1146.65028
[8] Chan, R.; Ng, M., Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38, 427-482 (1996) · Zbl 0863.65013
[9] Chan, R.; Strang, G., Toeplitz equations by conjugate gradients with circulant preconditioner, SIAM J. Sci. Stat. Comput., 10, 104-119 (1989) · Zbl 0666.65030
[10] Chan, T., An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Stat. Comput., 9, 766-771 (1988) · Zbl 0646.65042
[11] Deng, W., Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47, 204-226 (2008) · Zbl 1416.65344
[12] Ervin, V. J.; Heuer, N.; Roop, J. P., Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal., 45, 572-591 (2007) · Zbl 1141.65089
[13] Jin, X., Preconditioning Techniques for Teoplitz Systems (2010), Higher Education Press: Higher Education Press Beijing
[14] Langlands, T. A.M.; Henry, B. I., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205, 719-736 (2005) · Zbl 1072.65123
[15] Liu, F.; Anh, V.; Turner, I., Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166, 209-219 (2004) · Zbl 1036.82019
[16] Magin, R. L., Fractional Calculus in Bioengineering (2006), Begell House Publishers
[17] Meerschaert, M. M.; Scheffler, H. P.; Tadjeran, C., Finite difference methods for two-dimensional fractional dispersion equation, J. Comput. Phys., 211, 249-261 (2006) · Zbl 1085.65080
[18] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 65-77 (2004) · Zbl 1126.76346
[19] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56, 80-90 (2006) · Zbl 1086.65087
[20] Murio, D. A., Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl., 56, 1138-1145 (2008) · Zbl 1155.65372
[22] Pang, H.; Sun, H., Multigrid method for fractional diffusion equations, J. Comput. Phys., 231, 693-703 (2012) · Zbl 1243.65117
[23] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press New York · Zbl 0918.34010
[24] Raberto, M.; Scalas, E.; Mainardi, F., Waiting-times and returns in high-frequency financial data: an empirical study, Physica A, 314, 749-755 (2002) · Zbl 1001.91033
[25] Shlesinger, M. F.; West, B. J.; Klafter, J., Lévy dynamics of enhanced diffusion: application to turbulence, Phys. Rev. Lett., 58, 1100-1103 (1987)
[26] Sokolov, I. M.; Klafter, J.; Blumen, A., Fractional kinetics, Phys. Today Nov., 28-53 (2002)
[27] Sousa, E., Finite difference approximates for a fractional advection diffusion problem, J. Comput. Phys., 228, 4038-4054 (2009) · Zbl 1169.65126
[28] Su, L.; Wang, W.; Yang, Z., Finite difference approximations for the fractional advection-diffusion equation, Phys. Lett. A, 373, 4405-4408 (2009) · Zbl 1234.65034
[29] Tadjeran, C.; Meerschaert, M. M.; Scheffler, H. P., A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213, 205-213 (2006) · Zbl 1089.65089
[30] Wang, H.; Wang, K., An \(O(N \log^2 N)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations, J. Comput. Phys., 230, 7830-7839 (2011) · Zbl 1229.65165
[31] Wang, H.; Wang, K.; Sircar, T., A direct \(O(N \log^2 N)\) finite difference method for fractional diffusion equations, J. Comput. Phys., 229, 8095-8104 (2010) · Zbl 1198.65176
[32] Wang, K.; Wang, H., A fast characteristic finite difference method for fractional advection-diffusion equations, Adv. Water Resour., 34, 810-816 (2011)
[33] Zaslavsky, G. M.; Stevens, D.; Weitzner, H., Self-similar transport in incomplete chaos, Phys. Rev. E, 48, 1683-1694 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.