×

An open-source parallel code for computing the spectral fractional Laplacian on 3D complex geometry domains. (English) Zbl 07690829

Summary: We present a spectral element algorithm and open-source code for computing the fractional Laplacian defined by the eigenfunction expansion on finite 2D/3D complex domains with both homogeneous and nonhomogeneous boundaries. We demonstrate the scalability of the spectral element algorithm on large clusters by constructing the fractional Laplacian based on computed eigenvalues and eigenfunctions using up to thousands of CPUs. To demonstrate the accuracy of this eigen-based approach for computing the factional Laplacian, we approximate the solutions of the fractional diffusion equation using the computed eigenvalues and eigenfunctions on a 2D quadrilateral, and on a 3D cubic and cylindrical domain, and compare the results with the contrived solutions to demonstrate fast convergence. Subsequently, we present simulation results for a fractional diffusion equation on a hand-shaped domain discretized with 3D hexahedra, as well as on a domain constructed from the Hanford site geometry corresponding to nonzero Dirichlet boundary conditions. Finally, we apply the algorithm to solve the surface quasi-geostrophic (SQG) equation on a 2D square with periodic boundaries. Simulation results demonstrate the accuracy, efficiency, and geometric flexibility of our algorithm and that our algorithm can capture the subtle dynamics of anomalous diffusion modeled by the fractional Laplacian on complex geometry domains. The included open-source code is the first of its kind.

MSC:

65-XX Numerical analysis
74-XX Mechanics of deformable solids

Software:

PETSc
Full Text: DOI

References:

[1] Chen, W.; Holm, S., J. Acoust. Soc. Am., 115, 4, 1424-1430 (2004)
[2] Treeby, B. E.; Cox, B., J. Acoust. Soc. Am., 127, 5, 2741-2748 (2010)
[3] Zhu, T.; Harris, J. M., Geophysics, 79, 3, T105-T116 (2014)
[4] Kusnezov, D.; Bulgac, A.; Do Dang, G., Phys. Rev. Lett., 82, 6, 1136 (1999)
[5] del Castillo-Negrete, D.; Carreras, B.; Lynch, V., Phys. Plasmas, 11, 8, 3854-3864 (2004)
[6] del Castillo-Negrete, D.; Carreras, B.; Lynch, V., Phys. Rev. Lett., 94, 6, Article 065003 pp. (2005)
[7] Chen, W., Chaos, 16, 2, Article 023126 pp. (2006) · Zbl 1146.37312
[8] Berkowitz, B.; Scher, H.; Silliman, S. E., Water Resour. Res., 36, 1, 149-158 (2000)
[9] Mongioví, M. S.; Zingales, M., Int. J. Heat Mass Transfer, 67, 593-601 (2013)
[10] Tarasov, V. E., Modern Phys. Lett. A, 21, 20, 1587-1600 (2006) · Zbl 1097.78003
[11] Esmaeili, S.; Shamsi, M., Commun. Nonlinear Sci. Numer. Simul., 16, 9, 3646-3654 (2011) · Zbl 1226.65062
[12] Chen, W.; Pang, G., J. Comput. Phys., 309, 350-367 (2016) · Zbl 1351.80001
[13] Lischke, A.; Pang, G.; Gulian, M.; Song, F.; Glusa, C.; Zheng, X.; Mao, Z.; Cai, W.; Meerschaert, M. M.; Ainsworth, M., J. Comput. Phys., 404, Article 109009 pp. (2020) · Zbl 1453.35179
[14] Caffarelli, L. A.; Roquejoffre, J.-M.; Sire, Y., J. Eur. Math. Soc., 12, 5, 1151-1179 (2010) · Zbl 1221.35453
[15] Meerschaert, M. M.; Scheffler, H. P.; Tadjeran, C., J. Comput. Phys., 211, 1, 249-261 (2006) · Zbl 1085.65080
[16] Gu, Y.; Chen, W.; He, X., Comput. Struct., 135, 73-82 (2014)
[17] Chen, W.; Fu, Z.-J.; Chen, C.-S., (Briefs in Applied Sciences and Technology (2014), Springer: Springer New York, NY), 5-50 · Zbl 1282.65160
[18] Roop, J. P., J. Comput. Appl. Math., 193, 1, 243-268 (2006) · Zbl 1092.65122
[19] Pang, G.; Chen, W.; Fu, Z., J. Comput. Phys., 293, 280-296 (2015) · Zbl 1349.65522
[20] Wang, H.; Wang, K., J. Comput. Phys., 230, 21, 7830-7839 (2011) · Zbl 1229.65165
[21] Wang, H.; Du, N., J. Comput. Phys., 253, 50-63 (2013) · Zbl 1349.65341
[22] Wang, H.; Du, N., J. Comput. Phys., 258, 305-318 (2014) · Zbl 1349.65342
[23] Song, F.; Xu, C., J. Comput. Phys., 299, 196-214 (2015) · Zbl 1352.65400
[24] Ilić, M.; Liu, F.; Turner, I.; Anh, V., Fract. Calc. Appl. Anal., 8, 3, 323-341 (2005) · Zbl 1126.26009
[25] Ilić, M.; Liu, F.; Turner, I.; Anh, V., Fract. Calc. Appl. Anal., 9, 4, 333-349 (2006) · Zbl 1132.35507
[26] Yang, Q.; Turner, I.; Liu, F.; Ilić, M., SIAM J. Sci. Comput., 33, 3, 1159-1180 (2011) · Zbl 1229.35315
[27] Karniadakis, G. E.; Sherwin, S. J., Spectral/hp Element Methods for Computational Fluid Dynamics (2013), Oxford University Press · Zbl 1256.76003
[28] Antil, H.; Pfefferer, J.; Rogovs, S., Fractional operators with inhomogeneous boundary conditions: Analysis, Control, and Discretization (2017), arXiv preprint arXiv:1703.05256
[29] Song, F.; Xu, C.; Karniadakis, G. E., SIAM J. Sci. Comput., 39, 4, A1320-A1344 (2017) · Zbl 1380.65357
[30] Yang, Q., Novel Analytical and Numerical Methods for Solving Fractional Dynamical Systems (2010), Queensland University of Technology
[31] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Dener, A.; Eijkhout, V.; Gropp, W. D.; Karpeyev, D.; Kaushik, D.; Knepley, M. G.; May, D. A.; McInnes, L. C.; Mills, R. T.; Munson, T.; Rupp, K.; Sanan, P.; Smith, B. F.; Zampini, S.; Zhang, H.; Zhang, H., PETSc Users ManualTech. Rep. ANL-95/11 - Revision 3.12 (2019), Argonne National Laboratory, URL https://www.mcs.anl.gov/petsc
[32] Hernandez, V.; Roman, J. E.; Vidal, V., ACM Trans. Math. Software, 31, 3, 351-362 (2005), URL http://doi.acm.org/10.1145/1089014.1089019 · Zbl 1136.65315
[33] Carlson, M.; Kirby, R. M.; Sundar, H., (Proceedings of the 34th ACM International Conference on Supercomputing. Proceedings of the 34th ACM International Conference on Supercomputing, ICS ’20 (2020), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA)
[34] Kingspeak, URL https://www.chpc.utah.edu/documentation/guides/kingspeak.php.
[35] Frontera, URL https://www.overleaf.com/project/5cbb457f1f07a5705c5be796.
[36] Hanford Site, URL https://en.wikipedia.org/wiki/Hanford5FSite.
[37] Aorta, URL https://www.heart.org/en/health-topics/aortic-aneurysm/.
[38] MS Windows NT Kernel Description, URL http://www.ewp.rpi.edu/hartford/7Eernesto/C5FSu2003/MMHCD/Notes/.
[39] Baeumer, B.; Kovács, M.; Meerschaert, M. M., Comput. Math. Appl., 55, 10, 2212-2226 (2008) · Zbl 1142.65422
[40] Cottrell, J.; Hughes, T.; Reali, A., Comput. Methods Appl. Mech. Engrg., 196, 41, 4160-4183 (2007), URL http://www.sciencedirect.com/science/article/pii/S0045782507001703 · Zbl 1173.74407
[41] Moxey, D.; Cantwell, C. D.; Bao, Y.; Cassinelli, A.; Castiglioni, G.; Chun, S.; Juda, E.; Kazemi, E.; Lackhove, K.; Marcon, J.; Mengaldo, G.; Serson, D.; Turner, M.; Xu, H.; Peiró, J.; Kirby, R. M.; Sherwin, S. J., Comput. Phys. Comm., 249, Article 107110 pp. (2020), URL http://www.sciencedirect.com/science/article/pii/S0010465519304175 · Zbl 07678500
[42] de Falco, C.; Reali, A.; Vázquez, R., Adv. Eng. Softw., 42, 12, 1020-1034 (2011) · Zbl 1246.35010
[43] de Suarez, O. A.G.; Rossi, R.; Altafini, C. R.; da Silva, C. R.A., Appl. Math. Model., 39, 1, 396-413 (2015), URL http://www.sciencedirect.com/science/article/pii/S0307904X14002959 · Zbl 1428.74089
[44] Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, V.; Lathrop, S.; Lifka, D.; Peterson, G. D.; Roskies, R.; Scott, J. R.; Wilkins-Diehr, N., Comput. Sci. Eng., 16, 62-74 (2014)
[45] Babuška, I.; Osborn, J. E., Math. Comp., 52, 186, 275-297 (1989) · Zbl 0675.65108
[46] Xu, J., SIAM J. Sci. Comput., 15, 1, 231-237 (1994) · Zbl 0795.65077
[47] Constantin, P.; Majda, A. J.; Tabak, E., Nonlinearity, 7, 6, 1495 (1994) · Zbl 0809.35057
[48] Held, I. M.; Pierrehumbert, R. T.; Garner, S. T.; Swanson, K. L., J. Fluid Mech., 282, 1-20 (1995) · Zbl 0832.76012
[49] Constantin, P.; Lai, M. C.; Sharma, R.; Tseng, Y.-H.; Wu, J., J. Sci. Comput., 50, 1, 1-28 (2012) · Zbl 1238.86001
[50] Song, F.; Karniadakis, G. E., Chaos Solitons Fractals, 102, 327-332 (2017) · Zbl 1422.65289
[51] Tadmor, E., SIAM J. Numer. Anal., 26, 1, 30-44 (1989) · Zbl 0667.65079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.