×

An advanced numerical modeling for Riesz space fractional advection-dispersion equations by a meshfree approach. (English) Zbl 1471.65167

Summary: The space fractional advection-dispersion equations (SFADE) have been found to be very adequate in describing anomalous transport and dispersion phenomena. Aside from enjoying huge advantage in modeling, we have to face severe challenge presented by the non-locality of space fractional order derivatives, which is difficult to be handled by the traditional finite difference method (FDM) especially on a complex domain with irregularly distributed nodes. Therefore, it is crucial to develop a powerful numerical method to overcome this barrier. In this paper, the point interpolation method (PIM), a meshfree method, is further developed to solve SFADE, where the polynomial point-interpolation functions and their fractional derivatives with explicit expressions are substituted into Galerkin weak form of SFADE to obtain the discrete approximation system. Adopting an expanding technique, we develop an extended point interpolation method for SFADE with zero Dirichlet boundary condition. This technique avoids singular integral and turns system matrix into Toeplitz matrix. An efficient iteration algorithm is also suggested to reduce computing time and storage. Numerical experiments is presented to validate the newly developed method and to investigate accuracy and efficiency.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach: Gordon and Breach Yverdon · Zbl 0818.26003
[2] Baeumer, B.; Benson, D. A.; Meerschaert, M. M., Advection and dispersion in time and Space, Phys. A Stat. Mech. Appl., 350, 2, 245-262 (2005)
[3] Stern, R.; Effenberger, F.; Fichtner, H.; Schäfer, T., The space-fractional dispersion-advection equation: Analytical solutions and critical assessment of numerical solutions, Fract. Calc. Appl. Anal., 17, 1, 171-190 (2014) · Zbl 1312.35188
[4] Shen, S.; Liu, F.; Anh, V.; Turner, I., The fundamental solution and numerical solution of the Riesz fractional advection dispersion equation, IMA J. Appl. Math., 73, 6, 850-872 (2008) · Zbl 1179.37073
[5] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for fractional advection dispersion flow equations, J. Comput. Appl. Math., 172, 1, 65-77 (2004) · Zbl 1126.76346
[6] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for two-sided space- fractional partial differential equations, Appl. Numer. Math., 56, 1, 80-90 (2006) · Zbl 1086.65087
[7] Ervin, V. J.; Roop, J. P., Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differ. Equ., 22, 3, 558-576 (2006) · Zbl 1095.65118
[8] Ervin, V. J.; Heuer, N.; Roop, J. P., Numerical approximation of a time dependent, nonlinear, space-fractional dispersion equation, SIAM J. Numer. Anal., 45, 2, 572-591 (2007) · Zbl 1141.65089
[9] Liu, F.; Zhuang, P.; Turner, I., A new fractional finite volume method for solving the fractional dispersion equation, Appl. Math. Model., 5, 1-13 (2013)
[10] Li, X.; Xu, C. J., Existence and uniqueness of the weak solution of the space time fractional dispersion equation and a spectral method approximation, Commun. Comput. Phys., 8, 1016-1051 (2010) · Zbl 1364.35424
[11] Monaghan, J. J., Smoothed particle hydrodynamics, Ann. Rev. Astron. Astrophys., 30, 543-574 (1992)
[12] Liu, G. R.; Gu, Y. T., An Introduction to Meshfree Methods and Their Programming (2005), Springer
[13] Onate, E.; Idelsohn, S.; Zienkiewicz, O. C., A finite point method in computational mechanics. Applications to convective transport and fluid flow, Int. J. Numer. Methods Eng., 39, 22, 3839-3866 (1996) · Zbl 0884.76068
[14] Belytschko, T.; Lu, Y. Y.; Gu, L., Element‐free Galerkin methods, Int. J. Numer. Methods Eng., 37, 2, 229-256 (1994) · Zbl 0796.73077
[15] Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 22, 2, 117-127 (1998) · Zbl 0932.76067
[16] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int. J. Numer. Methods Fluids, 20, 8‐9, 1081-1106 (1995) · Zbl 0881.76072
[17] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput. Methods Appl. Mech. Eng., 139, 1, 3-47 (1996) · Zbl 0891.73075
[18] Li, S.; Liu, W. K., Meshfree and particle methods and their applications, Appl. Mech. Rev., 55, 1, 1-34 (2002)
[19] Gu, Y. T.; Zhuang, P.; Liu, Q., An advanced meshless method for time fractional dispersion equation, Int. J. Comput. Methods, 8, 4, 653-665 (2011) · Zbl 1245.65133
[20] Liu, Q.; Gu, Y. T.; Zhuang, P., An implicit RBF meshless approach for time fractional dispersion equations, Comput. Mech., 48, 1, 1-12 (2011) · Zbl 1377.76025
[21] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon equations, Eng. Anal. Bound. Elem., 50, 412-434 (2015) · Zbl 1403.65082
[22] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method, J. Comput. Appl. Math., 280, 14-36 (2015) · Zbl 1305.65211
[23] Liu, Q.; Liu, F.; Gu, Y. T., A meshless method based on point interpolation method for the space fractional diffusion equation, Appl. Math. Comput., 256, 930-938 (2015) · Zbl 1339.65132
[24] Yang, Q.; Liu, F.; Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 34, 1, 200-218 (2010) · Zbl 1185.65200
[25] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press New York · Zbl 0918.34010
[26] Kay, D.; Turner, I.; Cusimano, N.; Burrage, K., Reflections From a Boundary: Reflecting Boundary Conditions for Space-Fractional Partial Differential Equations on Bounded Domains (2013), University of Oxford, Technical Report
[27] Liu, G. R.; Gu, Y. T., A point interpolation method for two-dimensional solids, Int. J. Numer. Methods Eng., 50, 4, 937-951 (2001) · Zbl 1050.74057
[28] Liu, G. R.; Zhang, G. Y., Smoothed Point Interpolation Methods: G Space and Weakened Weak Forms (2013), World Scientific: World Scientific Singapore · Zbl 1278.65002
[29] Baeumer, B.; Kovács, M.; Meerschaert, M. M., Numerical solutions for fractional reaction-dispersion equations, Comput. Math. Appl., 55, 10, 2212-2226 (2008) · Zbl 1142.65422
[30] Zhang, H.; Liu, F.; Anh, V., Galerkin finite element approximation of symmetric space-fractional partial differential equations, Appl. Math. Comput., 217, 6, 2534-2545 (2010) · Zbl 1206.65234
[31] Chan, R. H.; Ng, MichaelK., Conjugate gradient method for Toeplitz systerms, SIAM Rev., 38, 3, 427-482 (1996) · Zbl 0863.65013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.