×

Higher order finite difference method for the reaction and anomalous-diffusion equation. (English) Zbl 1429.65188

Summary: In this paper, our aim is to study the high order finite difference method for the reaction and anomalous-diffusion equation. According to the equivalence of the Riemann-Liouville and Grünwald-Letnikov derivatives under the suitable smooth condition, a second-order difference approximation for the Riemann-Liouville fractional derivative is derived. A fourth-order compact difference approximation for second-order derivative in spatial is used. We analyze the solvability, conditional stability and convergence of the proposed scheme by using the Fourier method. Then we obtain that the convergence order is \(O(\tau^2 + h^4)\), where \(\tau\) is the temporal step length and \(h\) is the spatial step length. Finally, numerical experiments are presented to show that the numerical results are in good agreement with the theoretical analysis.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J., Fractional Calculus Models and Numerical Methods. Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos (2012), World Scientific · Zbl 1248.26011
[2] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier: Elsevier Amsterdam · Zbl 1092.45003
[3] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), John Wiley: John Wiley New York · Zbl 0789.26002
[4] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0924.34008
[5] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach Science Publishers · Zbl 0818.26003
[6] Baeumer, B.; Kovacs, M.; Meerschaert, M. M., Numerical solutions for fractional reaction-diffusion equations, Comput. Math. Appl., 2212-2226 (2008) · Zbl 1142.65422
[7] Li, C. P.; Chen, A.; Ye, J. J., Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Phys., 230, 3352-3368 (2011) · Zbl 1218.65070
[8] Li, C. P.; Zeng, F. H., The finite difference methods for fractional ordinary differential equations, Numer. Funct. Anal. Opt., 34, 2, 149-179 (2013) · Zbl 1267.65094
[9] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for fractional advection dispersion flow equations, J. Comput. Appl. Math., 172, 65-77 (2004) · Zbl 1126.76346
[10] Sousa, E., Numerical approximations for fractional diffusion equations via splines, Comput. Math. Appl., 62, 938-944 (2011) · Zbl 1228.65153
[11] Sousa, E., Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys., 228, 4038-4054 (2009) · Zbl 1169.65126
[12] Su, L.; Wang, W.; Wang, H., A characteristic finite difference method for the transient fractional convection-diffusion equations, Appl. Numer. Math., 61, 946-960 (2011) · Zbl 1225.65085
[13] Yang, Q. Q.; Liu, F.; Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 34, 200-218 (2010) · Zbl 1185.65200
[14] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 46, 1079-1095 (2008) · Zbl 1173.26006
[15] Li, C. P.; Zhao, Z. G.; Chen, Y. Q., Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl., 62, 855-875 (2011) · Zbl 1228.65190
[16] Li, C. P.; Zeng, F. H., Finite element methods for fractional differential equation, (Li, C. P.; Wu, Y. J.; Ye, R. S., Recent Advances in Applied Nonlinear Dynamics with Numerical Analysis (2013), World Scientific: World Scientific Singapore), 49-68 · Zbl 1319.65070
[17] Roop, J. P., Numerical approximation of a one-dimensional space fractional advection-dispersion equation with boundary layer, Comput. Math. Appl., 56, 1808-1819 (2008) · Zbl 1152.76430
[18] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032
[19] Yuste, S. B.; Lindenberg, K., Subdiffusion-limited \(A + A\) reactions, Phys. Rev. Lett., 87, 11, 118301 (2001)
[20] Yuste, S. B.; Acedo, L., An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42, 5, 1862-1874 (2005) · Zbl 1119.65379
[21] Yuste, S. B., Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys., 216, 264-274 (2006) · Zbl 1094.65085
[22] Chen, C.; Liu, F.; Turner, I.; Anh, V., A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227, 2, 886-897 (2007) · Zbl 1165.65053
[23] Cui, M., Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 228, 7792-7804 (2009) · Zbl 1179.65107
[24] Chen, C.; Liu, F.; Burrage, K., Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation, Appl. Math. Comput., 198, 754-769 (2008) · Zbl 1144.65057
[25] Ding, H. F.; Li, C. P., Mixed spline function method for reaction-subdiffusion equations, J. Comput. Phys., 242, 103-123 (2013) · Zbl 1297.65091
[26] Lubich, C., Discretized fractional calculus, SIAM J. Math. Anal., 17, 704-719 (1986) · Zbl 0624.65015
[27] Ding, H. F.; Li, C. P., Numerical algorithms for the fractional diffusion-wave equation with reaction term, Abstr. Appl. Anal., 493406 (2013), 15p · Zbl 1291.65261
[28] Li, M.; Tang, T., A compact fourth-order finite difference scheme for the steady incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluid., 20, 1137-1151 (1995) · Zbl 0836.76060
[29] Salkuyeh, D. K., On the finite difference approximation to the convection diffusion equation, Appl. Math. Comput., 179, 79-86 (2006) · Zbl 1100.65070
[30] Ross, K. A., Elementary Analysis: The Theory of Calculus (1996), Springer-Verlag: Springer-Verlag New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.