×

Accuracy and computational efficiency of dealiasing schemes for the DNS of under resolved flows with strong gradients. (English) Zbl 1524.76188

Summary: In this paper, we have studied the effect of residual aliasing error of the second order Runge-Kutta (RK2) based Random Phase Shift Method (RPSM) which shows smoothing effect in the solution of under-resolved flows involving strong gradients. Firstly, we show that RPSM is almost as accurate as the fully dealiased 3/2 Padding scheme but with similar computational cost as the fast 2/3 Truncation scheme. Secondly, we show that RPSM has high accuracy in the case of under-resolved shear layer and Surface Quasi-Geostrophic (SQG) flows. Further, we show that the 2/3 Truncation scheme turns more computationally expensive than 3/2 Padding or RPSM when we try to achieve the same level of accuracy. Filtering based dealiasing schemes are found to be an inappropriate choice for a variety of flow problems because they are prone to unphysical parasitic currents. For the first time error norm based computational efficiency, i.e., high accuracy at the lower computational cost of RPSM scheme is shown. Although some artifacts of dealiasing remain due to Fourier windowing in RPSM, it is found to be numerically stable even in under-resolved conditions at later simulation time. We have validated our numerical results with the analytical ones and also with the previous literature.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems

Software:

FFTW; spectralDNS
Full Text: DOI

References:

[1] Basdevant, C.; Deville, M.; Haldenwang, P.; Lacroix, J.; Ouazzani, J.; Peyret, R.; Orlandi, P.; Patera, A., Spectral and finite difference solutions of the Burgers equation, Comput. Fluids, 14, 1, 23-41 (1986) · Zbl 0612.76031
[2] Bell, J. B.; Colella, P.; Glaz, H. M., A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys., 85, 2, 257-283 (1989) · Zbl 0681.76030
[3] Boffetta, G.; Mazzino, A.; Musacchio, S.; Vozella, L., Statistics of mixing in three-dimensional Rayleigh-Taylor turbulence at low Atwood number and Prandtl number one, Phys. Fluids, 22, 3, Article 035109 pp. (2010) · Zbl 1188.76016
[4] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2001), Courier Corporation · Zbl 0994.65128
[5] Brown, D. L., Performance of under-resolved two-dimensional incompressible flow simulations, J. Comput. Phys., 122, 1, 165-183 (1995) · Zbl 0849.76043
[6] Brucker, K. A.; Isaza, J. C.; Vaithianathan, T.; Collins, L. R., Efficient algorithm for simulating homogeneous turbulent shear flow without remeshing, J. Comput. Phys., 225, 1, 20-32 (2007) · Zbl 1201.76076
[7] Cai, Q.-D.; Chen, S., A memory-saving algorithm for spectral method of three-dimensional homogeneous isotropic turbulence, Commun. Comput. Phys., 9, 5, 1152-1164 (2011) · Zbl 1364.76063
[8] Canuto, C.; Hussaini, M.; Quarteroni, A.; Zang, T. A., Spectral Methods Fundamentals in Single Domains (2006), Springer · Zbl 1093.76002
[9] Canuto, C. G.; Hussaini, M. Y.; Quarteroni, A. M.; Zang, T. A., Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) (2007), Springer-Verlag New York, Inc. · Zbl 1121.76001
[10] Clay, M.; Buaria, D.; Gotoh, T.; Yeung, P., A dual communicator and dual grid-resolution algorithm for petascale simulations of turbulent mixing at high Schmidt number, Comput. Phys. Comm., 219, 313-328 (2017) · Zbl 1411.76043
[11] Constantin, P.; Lai, M.-C.; Sharma, R.; Tseng, Y.-H.; Wu, J., New numerical results for the surface quasi-geostrophic equation, J. Sci. Comput., 50, 1, 1-28 (2012) · Zbl 1238.86001
[12] Constantin, P.; Nie, Q.; Schörghofer, N., Nonsingular surface quasi-geostrophic flow, Phys. Lett. A, 241, 3, 168-172 (1998) · Zbl 0974.76512
[13] Derevyanko, S., The \(( n + 1 ) / 2\) rule for dealiasing in the split-step Fourier methods for \(n\)-wave interactions, IEEE Photonics Technol. Lett., 20, 23, 1929-1931 (2008)
[14] Frigo, M.; Johnson, S. G., FFTW: an adaptive software architecture for the FFT, (Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on, Vol. 3 (1998), IEEE), 1381-1384
[15] Frigo, M.; Johnson, S. G., FFTW: Fastest Fourier transform in the west, Astrophys. Source Code Libr., 1 (2012), 1201.015
[16] Garnier, E.; Sagaut, P.; Deville, M., A class of explicit ENO filters with application to unsteady flows, J. Comput. Phys., 170, 1, 184-204 (2001) · Zbl 1011.76056
[17] Gotoh, T.; Hatanaka, S.; Miura, H., Spectral compact difference hybrid computation of passive scalar in isotropic turbulence, J. Comput. Phys., 231, 21, 7398-7414 (2012)
[18] Grauer, R.; Marliani, C.; Germaschewski, K., Adaptive mesh refinement for singular solutions of the incompressible Euler equations, Phys. Rev. Lett., 80, 19, 4177 (1998)
[19] Gu, Y.; Zhou, Y.; Wei, G., Conjugate filters with spectral-like resolution for 2D incompressible flows, Comput. & Fluids, 32, 6, 777-794 (2003) · Zbl 1040.76049
[20] Gualtieri, P.; Casciola, C.; Benzi, R.; Amati, G.; Piva, R., Scaling laws and intermittency in homogeneous shear flow, Phys. Fluids, 14, 2, 583-596 (2002) · Zbl 1184.76197
[21] Homann, H.; Dreher, J.; Grauer, R., Impact of the floating-point precision and interpolation scheme on the results of DNS of turbulence by pseudo-spectral codes, Comput. Phys. Comm., 177, 7, 560-565 (2007) · Zbl 1196.76052
[22] Hou, T. Y.; Li, R., Computing nearly singular solutions using pseudo-spectral methods, J. Comput. Phys., 226, 1, 379-397 (2007) · Zbl 1310.76127
[23] Hou, T. Y.; Li, R., Blowup or no blowup? the interplay between theory and numerics, Physica D, 237, 14, 1937-1944 (2008) · Zbl 1143.76390
[24] Hu, Z.; Morfey, C. L.; Sandham, N. D., Sound radiation in turbulent channel flows, J. Fluid Mech., 475, 269-302 (2003) · Zbl 1058.76060
[25] Hughes, T. J.; Mazzei, L.; Oberai, A. A.; Wray, A. A., The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence, Phys. Fluids, 13, 2, 505-512 (2001) · Zbl 1184.76236
[26] Iovieno, M.; Cavazzoni, C.; Tordella, D., A new technique for a parallel dealiased pseudospectral Navier-Stokes code, Comput. Phys. Comm., 141, 3, 365-374 (2001) · Zbl 1041.76055
[27] Ireland, P. J.; Collins, L. R., Direct numerical simulation of inertial particle entrainment in a shearless mixing layer, J. Fluid Mech., 704, 301-332 (2012) · Zbl 1246.76030
[28] Ireland, P. J.; Vaithianathan, T.; Sukheswalla, P. S.; Ray, B.; Collins, L. R., Highly parallel particle-laden flow solver for turbulence research, Comput. & Fluids, 76, 170-177 (2013) · Zbl 1391.76224
[29] Kaneda, Y.; Ishihara, T.; Gotoh, K., Taylor expansions in powers of time of Lagrangian and Eulerian two-point two-time velocity correlations in turbulence, Phys. Fluids, 11, 8, 2154-2166 (1999) · Zbl 1147.76427
[30] Kopriva, D., Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers (2009), Springer Science & Business Media · Zbl 1172.65001
[31] Mininni, P.; Pouquet, A., Helicity cascades in rotating turbulence, Phys. Rev. E, 79, 2, Article 026304 pp. (2009)
[32] Mininni, P.; Pouquet, A.; Montgomery, D., Small-scale structures in three-dimensional magnetohydrodynamic turbulence, Phys. Rev. Lett., 97, 24, Article 244503 pp. (2006)
[33] Minion, M. L.; Brown, D. L., Performance of under-resolved two-dimensional incompressible flow simulations, II, J. Comput. Phys., 138, 2, 734-765 (1997) · Zbl 0914.76063
[34] Mortensen, M.; Langtangen, H. P., High performance Python for direct numerical simulations of turbulent flows, Comput. Phys. Comm., 203, 53-65 (2016) · Zbl 1375.76072
[35] Orszag, S. A., Numerical methods for the simulation of turbulence, Phys. Fluids (1958-1988), 12, 12, II-250 (1969) · Zbl 0217.25803
[36] Orszag, S. A., On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components, J. Atmos. Sci., 28, 6, 1074 (1971)
[37] Ostilla-Monico, R.; Yang, Y.; van der Poel, E. P.; Lohse, D.; Verzicco, R., A multiple-resolution strategy for direct numerical simulation of scalar turbulence, J. Comput. Phys., 301, 308-321 (2015) · Zbl 1349.76136
[38] Patterson, G.; Orszag, S. A., Spectral calculations of isotropic turbulence: Efficient removal of aliasing interactions, Phys. Fluids (1958-1988), 14, 11, 2538-2541 (1971) · Zbl 0225.76033
[39] Perlekar, P.; Mitra, D.; Pandit, R., Manifestations of drag reduction by polymer additives in decaying, homogeneous, isotropic turbulence, Phys. Rev. Lett., 97, 26, Article 264501 pp. (2006)
[40] Pope, S. B., Turbulent Flows (2000), Cambridge University Press · Zbl 0966.76002
[41] Roberts, M.; Bowman, J. C., Dealiased convolutions for pseudospectral simulations, (Journal of Physics: Conference Series, Vol. 318 (2011), IOP Publishing), Article 072037 pp.
[42] Rogallo, R. S., An ILLIAC Program for the Numerical Simulation of Homogeneous Incompressible Turbulence, Vol. 73203 (1977), National Aeronautics and Space Administration
[43] Rogallo, R. S., Numerical Experiments in Homogeneous Turbulence, Vol. 81315 (1981), National Aeronautics and Space Administration
[44] Shu, C.-W.; Wong, P. S., A note on the accuracy of spectral method applied to nonlinear conservation laws, J. Sci. Comput., 10, 3, 357-369 (1995) · Zbl 0840.65103
[45] Sun, Y.; Zhou, Y.; Li, S.-G.; Wei, G. W., A windowed Fourier pseudospectral method for hyperbolic conservation laws, J. Comput. Phys., 214, 2, 466-490 (2006) · Zbl 1089.65109
[46] Tanahashi, M.; Iwase, S.; Miyauchi, T., Appearance and alignment with strain rate of coherent fine scale eddies in turbulent mixing layer, J. Turbul., 2, 6, 1-18 (2001) · Zbl 1082.76538
[47] Taylor, G. I.; Green, A. E., Mechanism of the production of small eddies from large ones, Proc. R. Soc. A, 158, 895, 499-521 (1937) · JFM 63.1358.03
[48] Wan, D.; Zhou, Y.; Wei, G., Numerical solution of incompressible flows by discrete singular convolution, Internat. J. Numer. Methods Fluids, 38, 8, 789-810 (2002) · Zbl 1005.76072
[49] Weinan, E.; Shu, C.-W., A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow, J. Comput. Phys., 110, 1, 39-46 (1994) · Zbl 0790.76055
[50] Zang, T. A., On the rotation and skew-symmetric forms for incompressible flow simulations, Appl. Numer. Math., 7, 1, 27-40 (1991) · Zbl 0708.76071
[51] Zhou, Y.; Wei, G., High resolution conjugate filters for the simulation of flows, J. Comput. Phys., 189, 1, 159-179 (2003) · Zbl 1097.76581
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.