×

Number of degrees of freedom and energy spectrum of surface quasi-geostrophic turbulence. (English) Zbl 1241.76310

Summary: We study both theoretically and numerically surface quasi-geostrophic turbulence regularized by the usual molecular viscosity, with an emphasis on a number of classical predictions. It is found that the system’s number of degrees of freedom \(N\), which is defined in terms of local Lyapunov exponents, scales as \(Re^{3/ 2} \), where \(Re\) is the Reynolds number expressible in terms of the viscosity, energy dissipation rate and system’s integral scale. For general power-law energy spectra \({k}^{{-} {\alpha} } \), a comparison of \(N\) with the number of dynamically active Fourier modes, i.e. the modes within the energy inertial range, yields \({\alpha} = 5/ 3\). This comparison further renders the scaling \(Re^{1/ 2} \) for the exponential dissipation rate at the dissipation wavenumber. These results have been predicted on the basis of Kolmogorov’s theory. Our approach thus recovers these classical predictions and is an analytic alternative to the traditional phenomenological method. The implications of the present findings are discussed in conjunction with related results in the literature. Support for the analytic results is provided through a series of direct numerical simulations.

MSC:

76F99 Turbulence
86A05 Hydrology, hydrography, oceanography

References:

[1] DOI: 10.1063/1.3276295 · Zbl 1183.76525 · doi:10.1063/1.3276295
[2] DOI: 10.1103/PhysRevE.79.056308 · doi:10.1103/PhysRevE.79.056308
[3] DOI: 10.1017/S0022112002001763 · Zbl 1152.76402 · doi:10.1017/S0022112002001763
[4] DOI: 10.1063/1.2375020 · Zbl 1146.76530 · doi:10.1063/1.2375020
[5] DOI: 10.1016/S0167-2789(03)00096-4 · Zbl 1040.35063 · doi:10.1016/S0167-2789(03)00096-4
[6] DOI: 10.1016/0960-0779(94)90140-6 · Zbl 0823.76034 · doi:10.1016/0960-0779(94)90140-6
[7] DOI: 10.1007/s00332-006-0800-3 · Zbl 1370.76015 · doi:10.1007/s00332-006-0800-3
[8] DOI: 10.1007/978-1-4612-4650-3 · doi:10.1007/978-1-4612-4650-3
[9] DOI: 10.1017/S0022112095000012 · Zbl 0832.76012 · doi:10.1017/S0022112095000012
[10] DOI: 10.1007/BF02780991 · doi:10.1007/BF02780991
[11] DOI: 10.1017/S0022112007008427 · Zbl 1169.76351 · doi:10.1017/S0022112007008427
[12] DOI: 10.1063/1.869184 · Zbl 1185.76841 · doi:10.1063/1.869184
[13] DOI: 10.1016/0167-2789(91)90098-T · Zbl 0728.76030 · doi:10.1016/0167-2789(91)90098-T
[14] DOI: 10.1103/PhysRevE.83.036317 · doi:10.1103/PhysRevE.83.036317
[15] DOI: 10.1007/s00222-006-0020-3 · Zbl 1121.35115 · doi:10.1007/s00222-006-0020-3
[16] DOI: 10.1016/S0375-9601(98)00108-X · Zbl 0974.76512 · doi:10.1016/S0375-9601(98)00108-X
[17] DOI: 10.1175/1520-0469(1994)051&lt;2756:QDOTT&gt;2.0.CO;2 · doi:10.1175/1520-0469(1994)051<2756:QDOTT>2.0.CO;2
[18] DOI: 10.1088/0951-7715/7/6/001 · Zbl 0809.35057 · doi:10.1088/0951-7715/7/6/001
[19] DOI: 10.1016/j.physd.2008.01.018 · Zbl 1143.76390 · doi:10.1016/j.physd.2008.01.018
[20] DOI: 10.1016/0167-2789(88)90022-X · Zbl 0658.58030 · doi:10.1016/0167-2789(88)90022-X
[21] DOI: 10.1007/BF02099744 · Zbl 0818.35085 · doi:10.1007/BF02099744
[22] DOI: 10.1017/S0022112008001110 · Zbl 1151.76616 · doi:10.1017/S0022112008001110
[23] DOI: 10.1103/PhysRevE.81.016301 · doi:10.1103/PhysRevE.81.016301
[24] DOI: 10.1063/1.3327284 · Zbl 1188.76161 · doi:10.1063/1.3327284
[25] DOI: 10.1017/S0022112006000577 · Zbl 1095.76028 · doi:10.1017/S0022112006000577
[26] Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics (1997) · Zbl 0871.35001 · doi:10.1007/978-1-4612-0645-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.