×

Eroding dipoles and vorticity growth for Euler flows in \(\mathbb{R}^{3}\): axisymmetric flow without swirl. (English) Zbl 1454.76032

Summary: A review of analyses based upon anti-parallel vortex structures suggests that structurally stable dipoles with eroding circulation may offer a path to the study of vorticity growth in solutions of Euler’s equations in \(\mathbb{R}^{3}\). We examine here the possible formation of such a structure in axisymmetric flow without swirl, leading to maximal growth of vorticity as \(t^{4/3}\). Our study suggests that the optimizing flow giving the \(t^{4/3}\) growth mimics an exact solution of Euler’s equations representing an eroding toroidal vortex dipole which locally conserves kinetic energy. The dipole cross-section is a perturbation of the classical Sadovskii dipole having piecewise constant vorticity, which breaks the symmetry of closed streamlines. The structure of this perturbed Sadovskii dipole is analysed asymptotically at large times, and its predicted properties are verified numerically. We also show numerically that if mirror symmetry of the dipole is not imposed but axial symmetry maintained, an instability leads to breakup into smaller vortical structures.

MSC:

76B47 Vortex flows for incompressible inviscid fluids
35Q31 Euler equations

References:

[1] Batchelor, G. K., On steady laminar flow with closed streamlines at large Reynolds number, J. Fluid Mech., 1, 177-190, (1956) · Zbl 0070.42004 · doi:10.1017/S0022112056000123
[2] Bustamante, M. D.; Kerr, R. M., 3D Euler about a 2D symmetry plane, Physica D, 237, 1912-1920, (2008) · Zbl 1143.76387
[3] Carlson, B. C.; Gustafson, J. L., Asymptotic expansion of the first elliptic integral, SIAM J. Math. Anal., 16, 1072-1092, (1985) · Zbl 0593.33002 · doi:10.1137/0516080
[4] Chernyshenko, S. I., The asymptotic form of the stationary separated circumfluence of a body at high Reynolds-numbers, PMM J. Appl. Math. Engng, 52, 746-753, (1988) · Zbl 0711.76015 · doi:10.1016/0021-8928(88)90010-X
[5] Childress, S., Solutions of Euler’s equations containing finite eddies, Phys. Fluids, 9, 860-872, (1966) · Zbl 0148.20603 · doi:10.1063/1.1761786
[6] Childress, S., Nearly two-dimensional solutions of Euler’s equations, Phys. Fluids, 30, 944-953, (1987) · Zbl 0645.76018 · doi:10.1063/1.866281
[7] Childress, S., Growth of anti-parallel vorticity in Euler flows, Physica D, 237, 1921-1925, (2008) · Zbl 1143.76405
[8] Childress, S.2009 S. Constraints on stretching by paired vortex structures I. Kinematics, II. The asymptotic dynamics of blow-up in three dimensions. Preliminary reports available at http://www.math.nyu.edu/faculty/childres/preprints.html.
[9] Gibbon, J. D., The three-dimensional Euler equations: Where do we stand?, Physica D, 237, 1894-1904, (2008) · Zbl 1143.76389
[10] Grafke, T.; Grauer, R., Lagrangian and geometric analysis of finite-time Euler singularities, Procedia IUTAM, 7, 32-56, (2013) · doi:10.1016/j.piutam.2013.09.005
[11] Hormoz, S.; Brenner, M. P., Absence of singular stretching of interacting vortex filaments, J. Fluid Mech., 707, 191-204, (2012) · Zbl 1275.76056 · doi:10.1017/jfm.2012.270
[12] Hou, T. Y.; Li, R., Blowup or no blowup? The interplay between theory and numerics, Physica D, 237, 1932-1944, (2008) · Zbl 1143.76390
[13] Kerr, R. M., Bounds on Euler from vorticity moments and line divergence, J. Fluid Mech., 729, R2, (2013) · Zbl 1291.76073 · doi:10.1017/jfm.2013.325
[14] Lim, T. T.; Nickels, T. B., Instability and reconnection in the head-on collision of two vortex rings, Nature, 357, 225-227, (1992) · doi:10.1038/357225a0
[15] Lu, L.; Doering, C. R., Limits on enstrophy growth for solutions of the three-dimensional Navier-Stokes equations, Indiana Univ. Math. J., 57, 2693-2727, (2008) · Zbl 1172.35055 · doi:10.1512/iumj.2008.57.3716
[16] Luo, G.; Hou, T. Y., Potentially singular solutions of the 3D axisymmetric Euler equations, Proc. Natl Acad. Sci. USA, 111, 12968-12973, (2014) · Zbl 1431.35115 · doi:10.1073/pnas.1405238111
[17] Majda, A. J.; Bertozzi, A. L., Vorticity and Incompressible Flow, (2001), Cambridge University Press · Zbl 0983.76001 · doi:10.1017/CBO9780511613203
[18] Meleshko, V. V.; Van Heijst, G. J. F., On Chaplygins investigations of two-dimensional vortex structures in an inviscid fluid, J. Fluid Mech., 272, 157-182, (1994) · Zbl 0819.76018 · doi:10.1017/S0022112094004428
[19] Moore, D. W.; Saffman, P. G.; Tanveer, S., The calculation of some Batchelor flows: the Sadovskii vortex and rotational corner flow, Phys. Fluids, 31, 978-990, (1988) · Zbl 0643.76020 · doi:10.1063/1.866718
[20] Oshima, Y., Head-on collision of two vortex rings, J. Phys. Soc. Japan, 44, 329-331, (1978)
[21] Pierrehumbert, R. T., A family of steady, translating vortex pairs with distributed vorticity, J. Fluid Mech., 99, 129-144, (1980) · Zbl 0473.76034 · doi:10.1017/S0022112080000559
[22] Prandtl, L., Essentials of Fluid Mechanics, (1952), Blackie
[23] Pumir, A.; Kerr, R. M., Numerical simulation of interacting vortex tubes, Phys. Rev. Lett., 58, 1636-1639, (1987) · doi:10.1103/PhysRevLett.58.1636
[24] Pumir, A.; Siggia, E., Vortex dynamics and the existence of solutions to the Navier-Stokes equations, Phys. Fluids, 30, 1606-1626, (1987) · Zbl 0628.76033 · doi:10.1063/1.866226
[25] Riley, N., The fascination of vortex rings, Appl. Sci. Res., 58, 169-189, (1998) · Zbl 0912.76012 · doi:10.1023/A:1000723416667
[26] Sadovskii, V. S., Vortex regions in a potential stream with a jump of Bernoulli’s constant at the boundary, Prikl. Mat. Mekh., 35, 773-779, (1971) · Zbl 0266.76020
[27] Saffman, P. G.; Tanveer, S., The touching pair of equal and opposite vortices, Phys. Fluids, 25, 1929-1930, (1982) · Zbl 0498.76025 · doi:10.1063/1.863679
[28] Shariff, K.; Leonard, A.; Ferziger, J. H., A contour dynamics algorithm for axisymmetric flows, J. Comput. Phys., 227, 9044-9062, (2008) · Zbl 1146.76041 · doi:10.1016/j.jcp.2007.10.005
[29] Shelley, M. J.; Meiron, D. I.; Orszag, S. A., Dynamical aspects of vortex reconnection of perturbed anti-parallel vortex tubes, J. Fluid Mech., 246, 613-652, (1993) · Zbl 0781.76028 · doi:10.1017/S0022112093000291
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.