×

Universal mechanism for saturation of vorticity growth in fully developed fluid turbulence. (English) Zbl 1291.76159

Summary: Numerical results from large-scale, long-time, simulations of decaying homogeneous turbulence are reported, which indicate that blow-up of inviscid flows is tamed by the emergence of collective dynamics of coherent structures. The simulations also suggest that this collective dynamics might lead to universal behaviour during the transient evolution of turbulence. In particular, simulations with three different initial conditions show evidence of a \(k^{-3}\log k\) spectrum in the transient stage, before the Kolmogorov \(k^{- 5/3}\) asymptotic regime is attained. Such a universal transient might serve as a spectral funnel to the time-asymptotic Kolmogorov spectrum, which is invariably observed in the late stage of all three simulations presented in this work. The present work is entirely based on simulation evidence. However, the statistical analysis of the coherent structures suggests an analogy with population dynamics, which might be conducive to new mathematical models of transient decaying turbulence.

MSC:

76F05 Isotropic turbulence; homogeneous turbulence
76F55 Statistical turbulence modeling
Full Text: DOI

References:

[1] DOI: 10.1023/A:1012437421667 · Zbl 0993.76030 · doi:10.1023/A:1012437421667
[2] Am. Sci. 67 pp 221– (1979)
[3] Annu. Rev. Fluid Mech. 28 pp 45– (1996)
[4] DOI: 10.1017/S0022112010003125 · Zbl 1205.76069 · doi:10.1017/S0022112010003125
[5] Fluid. Dyn. Res. 21 pp 477– (1997)
[6] DOI: 10.1146/annurev.fluid.010908.165210 · Zbl 1157.76020 · doi:10.1146/annurev.fluid.010908.165210
[7] The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (2001) · Zbl 0990.76001
[8] DOI: 10.1063/1.1762301 · doi:10.1063/1.1762301
[9] Phys. Fluids 5 pp 1725– (1993)
[10] DOI: 10.1016/j.physd.2008.01.018 · Zbl 1143.76390 · doi:10.1016/j.physd.2008.01.018
[11] Turbulence: An Introduction for Scientists and Engineers (2004) · Zbl 1061.76001
[12] DOI: 10.1103/PhysRevLett.88.244501 · doi:10.1103/PhysRevLett.88.244501
[13] DOI: 10.1016/j.fluiddyn.2004.09.005 · Zbl 1153.76393 · doi:10.1016/j.fluiddyn.2004.09.005
[14] DOI: 10.1016/j.physd.2007.11.006 · Zbl 1143.76515 · doi:10.1016/j.physd.2007.11.006
[15] DOI: 10.1126/science.1085048 · doi:10.1126/science.1085048
[16] DOI: 10.1017/S0022112092001733 · Zbl 0756.76034 · doi:10.1017/S0022112092001733
[17] Spectral Methods in Fluid Dynamics (1988) · Zbl 0658.76001
[18] DOI: 10.1023/A:1027308602344 · Zbl 1058.76011 · doi:10.1023/A:1027308602344
[19] Turbulence: The Legacy of AN Kolmogorov (1995)
[20] DOI: 10.1103/PhysRevE.86.066302 · doi:10.1103/PhysRevE.86.066302
[21] DOI: 10.1063/1.2907227 · Zbl 1182.76213 · doi:10.1063/1.2907227
[22] DOI: 10.1017/S0022112083001159 · Zbl 0517.76033 · doi:10.1017/S0022112083001159
[23] DOI: 10.1103/PhysRevLett.78.2964 · doi:10.1103/PhysRevLett.78.2964
[24] Phys. Rep. 222 pp 145– (1992)
[25] DOI: 10.1016/j.physa.2004.02.013 · doi:10.1016/j.physa.2004.02.013
[26] DOI: 10.1209/epl/i2003-00496-6 · doi:10.1209/epl/i2003-00496-6
[27] DOI: 10.1146/annurev.fluid.29.1.435 · doi:10.1146/annurev.fluid.29.1.435
[28] Rev. Mod. Phys. 71 pp 383– (1999)
[29] Turbulent Flows (2000) · Zbl 0966.76002
[30] J. Fluid Mech. 444 pp 299– (2001)
[31] DOI: 10.1073/pnas.0909560107 · doi:10.1073/pnas.0909560107
[32] DOI: 10.1146/annurev.fluid.30.1.539 · Zbl 1398.76073 · doi:10.1146/annurev.fluid.30.1.539
[33] DOI: 10.1007/s00162-009-0100-2 · Zbl 1191.76059 · doi:10.1007/s00162-009-0100-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.