×

Sufficient conditions for the existence of periodic solutions of the extended Duffing-Van der Pol oscillator. (English) Zbl 1348.34078

The authors consider the following first-order differential system associated to the extended Duffing-Van der Pol oscillator \[ \begin{aligned}\dot{x}&=y,\\ \dot{y}&=-x+\rho y-\alpha x^{3}-\rho x^{2}y-\lambda x^{5}+\delta \mathrm{ cost}. \end{aligned} (1) \] Under some sufficient conditions on the parameters \(\rho\), \(\alpha\), \(\lambda\) and \(\delta\), they prove that the system (1) possesses one or three periodic solutions and they study the stability of some of them. For the proofs, they use an analytical approach and apply the averaging theory and some algebraic techniques.

MSC:

34C25 Periodic solutions to ordinary differential equations
34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
37C60 Nonautonomous smooth dynamical systems
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C29 Averaging method for ordinary differential equations

References:

[1] DOI: 10.1090/gsm/003 · doi:10.1090/gsm/003
[2] DOI: 10.1137/S1111111102419130 · Zbl 1089.37013 · doi:10.1137/S1111111102419130
[3] DOI: 10.1016/j.bulsci.2003.09.002 · Zbl 1055.34086 · doi:10.1016/j.bulsci.2003.09.002
[4] Buica A., Comm. Pure Appl. Anal. 6 pp 103– (2007)
[5] DOI: 10.1080/00207160802706591 · Zbl 1337.65109 · doi:10.1080/00207160802706591
[6] DOI: 10.1016/j.mechrescom.2009.06.001 · Zbl 1273.70036 · doi:10.1016/j.mechrescom.2009.06.001
[7] DOI: 10.1111/j.0022-2526.2004.01507.x · Zbl 1141.34323 · doi:10.1111/j.0022-2526.2004.01507.x
[8] Egami C., Math. Econ. 1264 pp 159– (2001)
[9] DOI: 10.3934/dcds.2014.34.3455 · Zbl 1302.86010 · doi:10.3934/dcds.2014.34.3455
[10] DOI: 10.1080/00207390902759568 · Zbl 1297.97026 · doi:10.1080/00207390902759568
[11] DOI: 10.1137/S1111111102404738 · Zbl 1088.37504 · doi:10.1137/S1111111102404738
[12] DOI: 10.1016/j.jsv.2003.09.051 · Zbl 1236.93085 · doi:10.1016/j.jsv.2003.09.051
[13] DOI: 10.1016/j.physleta.2004.01.016 · Zbl 1118.81375 · doi:10.1016/j.physleta.2004.01.016
[14] DOI: 10.1016/S0378-4371(02)01797-1 · Zbl 1020.37014 · doi:10.1016/S0378-4371(02)01797-1
[15] Li H., Gröbner Bases in Ring Theory (2011) · doi:10.1142/8223
[16] DOI: 10.1016/j.amc.2006.06.033 · Zbl 1130.70323 · doi:10.1016/j.amc.2006.06.033
[17] DOI: 10.1007/s11071-011-0206-0 · Zbl 1243.93037 · doi:10.1007/s11071-011-0206-0
[18] DOI: 10.1007/s11071-012-0346-x · Zbl 1258.34126 · doi:10.1007/s11071-012-0346-x
[19] DOI: 10.1016/j.cam.2008.07.032 · Zbl 1162.65062 · doi:10.1016/j.cam.2008.07.032
[20] Sanders J.A., Applied Mathematical Science 59, in: Averaging Method in Nonlinear Dynamical Systems (2007) · Zbl 1128.34001
[21] DOI: 10.1016/j.chaos.2003.12.014 · Zbl 1046.70012 · doi:10.1016/j.chaos.2003.12.014
[22] DOI: 10.1016/0375-9601(94)90244-5 · Zbl 0961.34502 · doi:10.1016/0375-9601(94)90244-5
[23] DOI: 10.1016/S0378-4371(01)00500-3 · Zbl 1010.70017 · doi:10.1016/S0378-4371(01)00500-3
[24] DOI: 10.1109/TCS.1981.1084975 · doi:10.1109/TCS.1981.1084975
[25] DOI: 10.1103/PhysRevE.56.6321 · doi:10.1103/PhysRevE.56.6321
[26] DOI: 10.1006/jsco.1998.0274 · Zbl 0957.65041 · doi:10.1006/jsco.1998.0274
[27] DOI: 10.1142/S0218127406016276 · Zbl 1142.34023 · doi:10.1142/S0218127406016276
[28] DOI: 10.1016/j.chaos.2005.04.048 · Zbl 1083.37062 · doi:10.1016/j.chaos.2005.04.048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.