×

The analysis of operator splitting methods for the Camassa-Holm equation. (English) Zbl 1393.65018

Summary: In this paper, the convergence analysis of operator splitting methods for the Camassa-Holm equation is provided. The analysis is built upon the regularity of the Camassa-Holm equation and the divided equations. It is proved that the solution of the Camassa-Holm equation satisfies the locally Lipschitz condition in \(H^1\) and \(H^2\) norm, which ensures the regularity of the numerical solution. Through the calculus of Lie derivatives, we show that the Lie-Trotter and Strang splitting converge with the expected rate under suitable assumptions. Numerical experiments are presented to illustrate the theoretical result.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
22E70 Applications of Lie groups to the sciences; explicit representations
76B25 Solitary waves for incompressible inviscid fluids
35Q53 KdV equations (Korteweg-de Vries equations)
Full Text: DOI

References:

[1] Artebrant, R.; Schroll, H. J., Numerical simulation of Camassa-Holm peakons by adaptive upwinding, Appl. Numer. Math., 56, 695-711 (2006) · Zbl 1156.65313
[2] Camassa, R.; Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) · Zbl 0972.35521
[3] Cohen, D.; Owren, B.; Raynaud, X., Multi-symplectic integration of the Camassa-Holm equation, J. Comput. Phys., 227, 5492-5512 (2008) · Zbl 1148.65093
[4] Einkemmer, L.; Ostermann, A., Convergence analysis of a discontinuous Galerkin/Strang splitting approximation for the Vlasov-Poisson equations, SIAM J. Numer. Anal., 52, 757-778 (2014) · Zbl 1302.82108
[5] Einkemmer, L.; Ostermann, A., Convergence analysis of Strang splitting for Vlasov-type equations, SIAM J. Numer. Anal., 52, 140-155 (2014) · Zbl 1297.65106
[6] Faou, E.; Ostermann, A.; Schratz, K., Analysis of exponential splitting methods for inhomogeneous parabolic equations, IMA J. Numer. Anal., 35, 161-178 (2015) · Zbl 1311.65118
[7] Feng, B. F.; Liu, Y., An operator splitting method for the Degasperis-Procesi equation, J. Comput. Phys., 228, 7805-7820 (2009) · Zbl 1175.65094
[8] Feng, B. F.; Mitsui, T., A finite difference method for the Korteweg-de Vries and the Kadomtsev-Petviashvili equations, J. Comput. Appl. Math., 90, 95-116 (1998) · Zbl 0907.65085
[9] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics (2006), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1094.65125
[10] Hairer, E.; Norsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I: Nonstiff Problems (2006), Springer-Verlag
[11] Hansen, E.; Ostermann, A., Exponential splitting for unbounded operators, Math. Comput., 78, 1485-1496 (2009) · Zbl 1198.65185
[12] Holden, H.; Karlsen, K. H.; Risebro, N. H., Operator splitting methods for generalized Korteweg-de Vries equations, J. Comput. Phys., 153, 203-222 (1999) · Zbl 0947.65102
[13] Holden, H.; Karlsen, K. H.; Risebro, N. H.; Tao, T., Operator splitting for Korteweg-de Vries equation, Math. Comput., 80, 821-846 (2011) · Zbl 1219.35235
[14] Holden, H.; Lubich, C.; Risebro, N. H., Operator splitting for partial differential equations with Burgers nonlinearity, Math. Comput., 82, 173-185 (2013) · Zbl 1260.35184
[15] Holden, H.; Raynaud, X., Convergence of a finite difference scheme for the Camassa-Holm equation, SIAM J. Numer. Anal., 44, 1655-1680 (2006) · Zbl 1122.76065
[16] Holden, H.; Raynaud, X., A convergent numerical scheme for the Camassa-Holm equation based on multipeakons, Discrete Contin. Dyn. Syst., 14, 505-523 (2006) · Zbl 1111.35061
[17] Jahnke, T.; Lubich, C., Error bounds for exponential operator splittings, BIT, 40, 735-744 (2000) · Zbl 0972.65061
[18] Kalisch, H.; Lenells, J., Numerical study of traveling-wave solutions for the Camassa-Holm equation, Chaos Solitons Fractals, 25, 287-298 (2005) · Zbl 1136.35448
[19] Koch, O.; Neuhauser, C.; Thalhammer, M., Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics, ESAIM Math. Model. Numer., 47, 1265-1286 (2013) · Zbl 1311.65053
[20] LeVeque, R. J., Numerical Methods for Conservation Laws (1992), Birkhäuser Verlag · Zbl 0847.65053
[21] Li, Y. A.; Olver, P. J., Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differ. Equ., 162, 27-63 (2000) · Zbl 0958.35119
[22] Lubich, C., On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comput., 77, 2141-2153 (2008) · Zbl 1198.65186
[23] McLachlan, R. I.; Quispel, G. R.W., Splitting methods, Acta Numer., 11, 341-434 (2002) · Zbl 1105.65341
[24] Ostermann, A.; Schratz, K., Error analysis of splitting methods for inhomogeneous evolution equations, Appl. Numer. Math., 62, 1436-1446 (2012) · Zbl 1267.65085
[25] Thalhammer, M., High-order exponential operator splitting methods for time-dependent Schrödinger equations, SIAM J. Numer. Anal., 46, 2022-2038 (2008) · Zbl 1170.65061
[26] Xu, Y.; Shu, C. W., A local discontinuous Galerkin method for the Camassa-Holm equation, SIAM J. Numer. Anal., 46, 1998-2021 (2008) · Zbl 1173.65063
[27] Zürnacı, F., Convergence Analysis and Numerical Solutions of the Fisher’s and Benjamin-Bono-Mahony Equations by Operator Splitting Method (2014), İzmir Institute of Technology, Master’s thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.