×

A Fourier analysis based new look at integration. (English) Zbl 1523.60174

Summary: We approach the problem of integration for rough integrands and integrators, typically representing trajectories of stochastic processes possessing only some Hölder regularity of possibly low order, in the framework of para-control calculus. For this purpose, we first decompose integrand and integrator into Paley-Littlewood packages along the Haar-Schauder system. By careful estimation of the components of products of packages of the integrand and derivatives of the integrator we obtain a characterization of Young’s integral. For the most interesting case of functions with Hölder regularities that sum up to an order below 1 we have to employ the concept of para-control of integrand and integrator with respect to a reference function for which a version of antisymmetric Lévy area is known to exist. This way we obtain an interpretation of the rough path integral. Lévy areas being known for most frequently used stochastic processes such as (fractional) Brownian motion, this integral serves as a basis for pathwise stochastic calculus, as the integral in classical rough path analysis.

MSC:

60L20 Rough paths
60H05 Stochastic integrals
42A24 Summability and absolute summability of Fourier and trigonometric series
46A16 Not locally convex spaces (metrizable topological linear spaces, locally bounded spaces, quasi-Banach spaces, etc.)

References:

[1] A. Andresen, P. Imkeller, and N. Perkowski, Large deviations for Hilbert-space-valued Wiener processes: a sequence space approach, in: F. Viens et al (eds.), Malliavin Calculus and Stochastic Analysis, Springer, New York, 2013, pp. 115-138. · Zbl 1287.60036
[2] H. Bahouri, J.-Y. Chemin, and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren Math. Wiss., 343, Springer, Berlin, 2011. · Zbl 1227.35004
[3] P. Baldi and B. Roynette, Some exact equivalents for the Brownian motion in Hölder norm, Probab. Theory Related Fields 93 (1992), no. 4, 457-484. · Zbl 0767.60078
[4] G. Ben Arous, M. Gr€dinaru, and M. Ledoux, Hölder norms and the support theorem for diffusions, Ann. Inst. H. Poincaré Probab. Statist. 30 (1994), no. 3, 415-436. · Zbl 0814.60075
[5] G. Ben Arous and M. Ledoux, Grandes déviations de Freidlin-Wentzell en norme hölderienne, in: J. Azéma et al (eds.), Séminaire de Probabilités XXVIII, Lecture Notes in Math., 1583, Springer-Verlag, Berlin, 1994, pp. 293-299. · Zbl 0811.60019
[6] M. Eddahbi, M. N’zi, and Y. Ouknine, Grandes déviations des diffusions sur les es-paces de Besov-Orlicz et application, Stochastics Stochastics Rep. 65 (1999), no. 3-4, 299-315. · Zbl 0926.60029
[7] R. Catellier and M. Gubinelli, Averaging along irregular curves and regularisation of ODEs, Stochastic Process. Appl. 126 (2016), no. 8, 2323-2366. · Zbl 1348.60083
[8] Z. Ciesielski, On the isomorphisms of the space H_αand m, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 217-222. · Zbl 0093.12301
[9] Z. Ciesielski, G. Kerkyacharian, and B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens, Studia Math. 107 (1993), no. 2, 171-204. · Zbl 0809.60004
[10] P.K. Friz and M. Hairer, A Course on Rough Paths, Universitext, Springer, Berlin, 2014. · Zbl 1327.60013
[11] P.K. Friz and N.B. Victoir, Multidimensional Stochastic Processes as Rough Paths. Theory and Applications, Cambridge Stud. Adv. Math., 120, Cambridge University Press, Cambridge, 2010. · Zbl 1193.60053
[12] N. Gantert, Einige große Abweichungen der Brownschen Bewegung, PhD thesis, Universität Bonn, 1991. · Zbl 0746.60026
[13] M. Gubinelli, Controlling rough paths, J. Funct. Anal. 216 (2004), no. 1, 86-140. · Zbl 1058.60037
[14] M. Gubinelli, Ramification of rough paths, J. Differential Equations 248 (2010), no. 4, 693-721. · Zbl 1315.60065
[15] M. Gubinelli, P. Imkeller, and N. Perkowski, Paracontrolled distributions and singular PDEs, Forum Math. Pi 3 (2015), e6, 75 pp. · Zbl 1333.60149
[16] M. Gubinelli, P. Imkeller, and N. Perkowski, A Fourier analytic approach to pathwise stochastic integration, Electron. J. Probab. 21 (2016), Paper No. 2, 37 pp. · Zbl 1338.60139
[17] M. Hairer, A theory of regularity structures, Invent. Math. 198 (2014), no. 2, 269-504. · Zbl 1332.60093
[18] P. Imkeller and D.J. Prömel, Existence of Lévy’s area and pathwise integration, Commun. Stoch. Anal. 9 (2015), no. 1, 93-111.
[19] A. Kamont, Isomorphism of some anisotropic Besov and sequence spaces, Studia Math. 110 (1994), no. 2, 169-189. · Zbl 0810.41010
[20] A. Lejay, Controlled differential equations as Young integrals: a simple approach, J. Differential Equations 249 (2010), no.8, 1777-1798. · Zbl 1216.34058
[21] T.J. Lyons, Uncertain volatility and the risk-free synthesis of derivatives, Appl. Math. Finance 2 (1995), no. 2, 117-133. · Zbl 1466.91347
[22] T.J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (1998), no. 2, 215-310. · Zbl 0923.34056
[23] T.J. Lyons, M.J. Caruana, and T. Lévy, Differential Equations Driven by Rough Paths, Lecture Notes in Math., 1908, Springer, Berlin, 2007. · Zbl 1176.60002
[24] T.J. Lyons and Z.M. Qian, Calculus for multiplicative functionals, Itô’s formula and differential equations, in: N. Ikeda et al (eds.), Itô’s Stochastic Calculus and Probability Theory, Springer-Verlag, Tokyo, 1996, pp. 233-250. · Zbl 0862.60043
[25] T. Lyons and Z. Qian, Flow equations on spaces of rough paths, J. Funct. Anal. 149, (1997), no. 1, 135-159. · Zbl 0890.58090
[26] T. Lyons and Z. Qian, System Control and Rough Paths, Oxford Math. Monogr., Oxford Sci. Publ., Oxford University Press, Oxford, 2002. · Zbl 1029.93001
[27] T. Lyons and O. Zeitouni, Conditional exponential moments for iterated Wiener integrals, Ann. Probab. 27 (1999), no. 4, 1738-1749. · Zbl 0961.60053
[28] P. Mörters and Y. Peres, Brownian Motion, Camb. Ser. Stat. Probab. Math., 30, Cambridge University Press, Cambridge, 2010. · Zbl 1243.60002
[29] D. Nualart and S. Tindel, A construction of the rough path above fractional Brownian motion using Volterra’s representation, Ann. Probab. 39 (2011), no 3, 1061-1096. · Zbl 1219.60041
[30] D. Nualart and M. Zakai, On the relation between the Stratonovich and Ogawa integrals, Ann. Probab. 17 (1989), no. 4, 1536-1540. · Zbl 0683.60035
[31] S. Ogawa, Quelques propriétés de l’intégrale stochastique du type noncausal, Japan J. Appl. Math. 1 (1984), no. 2, 405-416. · Zbl 0633.60076
[32] S. Ogawa, The stochastic integral of noncausal type as an extension of the symmetric integrals, Japan J. Appl. Math. 2 (1985), no. 1, 229-240. · Zbl 0616.60056
[33] S. Ogawa, Noncausal stochastic calculus revisited – around the so-called Ogawa integral, in: N.M. Chuong et al (eds.), Advances in Deterministic and Stochastic Analysis, World Sci. Publ. Co. Pte. Ltd., Hackensack, NJ, 2007, pp. 297-320. · Zbl 1143.60038
[34] M. Rosenbaum, First order p-variations and Besov spaces, Statist. Probab. Lett. 79 (2009), no. 1, 55-62. · Zbl 1172.60008
[35] B. Roynette, Mouvement Brownien et espaces de Besov, Stochastics Stochastics Rep. 43 (1993), no. 3-4, 221-260. · Zbl 0808.60071
[36] J. Unterberger, A rough path over multidimensional fractional Brownian motion with arbitrary Hurst index by Fourier normal ordering, Stochastic Process. Appl. 120 (2010), no. 8, 1444-1472. · Zbl 1221.05062
[37] J. Unterberger, Hölder continuous rough paths by Fourier normal ordering, Comm. Math. Phys. 298 (2010), no. 1, 1-36. · Zbl 1221.46047
[38] L.C. Young, General inequalities for Stieltjes integrals and the convergence of Fourier series, Math. Ann. 115 (1938), no. 1, 581-612. · JFM 64.0198.03
[39] A.K. Zvonkin, A transformation of the phase space of a diffusion process that will remove the drift, (in Russian), Mat. Sb. (N.S.) 93(135) (1974), 129-149, 152. · Zbl 0306.60049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.