×

One class of continuous functionswith complicated local properties related to Engel series. (English) Zbl 1541.26016

Summary: In the paper, we construct and study the class of continuous on \([0, 1]\) functions with continuum set of peculiarities (singular, nowhere monotonic, and non-differentiable functionsare among them). The representative of this class is the function \(y = f(x)\) defined by the Engel representation of argument: \[ x = \sum\limits_{n=1}^{\infty} \frac{1}{(2+g_1)(2+g_1 +g_2) \dots (2+g_1 +g_2 +\dots +g_n)}=: \Delta^E_{g_1 g_2 \dots g_n \dots}, \] where \(g_n = g_n (x) \in \{ 0, 1, 2, \dots \}\), and convergent real series \[ \sum\limits_{n=0}^{\infty} u_n = u_0 + u_1 + \dots + u_n + r_n = 1,\qquad \vert u_n \vert < 1, 0 < r_n < 1, \] by the following equality \[ f(\Delta^E_{g_1 (x)g_2 (x)\dots g_n (x)\dots})= r_{g_1 (x)} + \sum\limits_{k=2}^{\infty}\bigg( r_{g_k (x)} \prod\limits_{i=1}^{k-1} u_{g_i (x)} \bigg). \] We study local and global properties of function \(f\): structural, extremal, differential, integral, and fractal properties.

MSC:

26A30 Singular functions, Cantor functions, functions with other special properties
11K55 Metric theory of other algorithms and expansions; measure and Hausdorff dimension
39B72 Systems of functional equations and inequalities
Full Text: DOI

References:

[1] S. Albeverio, O. Baranovskyi, Yu. Kondratiev, and M. Pratsiovytyi, On one class of functions related to Ostrogradsky series and containing singular and nowhere monotonic functions, Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Drahomanova. Ser. 1. Fiz.-Mat. Nauky (2013), no. 15, 24-41.
[2] S. Albeverio, M. Pratsiovytyi, and G. Torbin, Fractal probability distributions and transformations preserving the Hausdorff-Besicovitch dimension, Ergodic Theory Dynam. Systems 24 (2004), no. 1, 1-16. · Zbl 1115.37016
[3] S. Banach, Über die Baire’sche Kategorie gewisser Funktionenmengen, Studia Math. 3 (1931), 174-179. · JFM 57.0305.05
[4] O.M. Baranovskyi, M.V. Pratsiovytyi, and B.I. Hetman, Comparative analysis of metric theories of representations of numbers by Engel and Ostrogradsky series and continued fractions, Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Drahomanova. Ser. 1. Fiz.-Mat. Nauky (2011), no. 12, 130-139 (in Ukrainian).
[5] O.M. Baranovskyi, M.V. Pratsiovytyi, and G.M. Torbin, Topological and metric properties of sets of real numbers with conditions on their expansions in Ostrogradskii series, Ukrainian Math. J. 59 (2007), no. 9, 1281-1299. · Zbl 1150.11027
[6] O.M. Baranovskyi, M.V. Pratsiovytyi, and G.M. Torbin, Ostrogradsky-Sierpiński-Pierce series and their applications, Acad. Book Proj., Nauk. Dumka, Kyiv, 2013 (in Ukrainian).
[7] K.A. Bush, Continuous functions without derivatives, Amer. Math. Monthly 59 (1952), no. 4, 222-225. · Zbl 0046.28705
[8] F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verh. d. 52. Versamml. dtsch. Philologen u. Schulmänner Marburg 1913, Teubner, Leipzig, 1914, pp. 190-191.
[9] P.Erdös, A.Rényi, and P.Szüsz, On Engel’s and Sylvester’s series, Ann. Univ. Sci. Budapest. Sect. Math. 1 (1958), 7-32. · Zbl 0107.27002
[10] B.I. Hetman, M.V. Pratsiovytyi, and O.M. Baranovskyi, On the properties of one family of Cantor type sets defined by conditions on elements of Engel expansion, Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Drahomanova. Ser. 1. Fiz.-Mat. Nauky (2010), no. 11, 119-142 (in Ukrainian).
[11] S. Mazurkiewicz, Sur les fonctions non dérivables, Studia Math. 3 (1931), 92-94. · Zbl 0003.29702
[12] H. Minkowski, Zur Geometrie der Zahlen, Verh. d. 3. Int. Math.-Kongr. Heidelb. 1904, Teubner, Leipzig, 1905, pp. 164-173. · JFM 36.0281.01
[13] O.B. Panasenko, Hausdorff-Besicovitch dimension of the graph of one continuous nowhere-differentiable function, Ukrainian Math. J. 61 (2009), no. 9, 1448-1466. · Zbl 1224.11068
[14] M.V. Pratsiovytyi, Continuous Cantor projectors, Methods of investigation of algebraic and topological structures, Kyiv State Pedagog. Inst., Kyiv, 1989, pp. 95-105 (in Russian). · Zbl 0761.26007
[15] M.V. Pratsiovytyi, Fractal approach to investigation of singular probability distributions, Natl. Pedagog. Mykhailo Drahomanov Univ. Publ., Kyiv, 1998 (in Ukrainian).
[16] M.V. Pratsiovytyi, Nowhere monotonic singular functions, Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Drahomanova. Ser. 1. Fiz.-Mat. Nauky (2011), no. 12, 24-36 (in Ukrainian).
[17] M.V. Pratsiovytyi and B.I. Hetman, Engel series and their applications, Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Drahomanova. Ser. 1. Fiz.-Mat. Nauky (2006), no. 7, 105-116 (in Ukrainian).
[18] M.V. Pratsiovytyi and A. V. Kalashnikov, Self-affine singular and nowhere monotone functions related to the \(Q\)-representation of real numbers, Ukrainian Math. J. 65 (2013), no. 3, 448-462. · Zbl 1297.26007
[19] M.V. Pratsiovytyi and Yu. Khvorostina, Topological and metric properties of distributions of random variables represented by the alternating Lüroth series with independent elements, Random Oper. Stoch. Equ. 21 (2013), no. 4, 385-401. · Zbl 1362.60005
[20] M.V. Pratsiovytyi and O.B. Panasenko, Differential and fractal properties of a class of self-affine functions, Visn. Lviv. Univ. Ser. Mekh.-Mat. (2009), no. 70, 128-142 (in Ukrainian). · Zbl 1199.26019
[21] M.V. Pratsiovytyi and N.A. Vasylenko, Fractal properties of functions defined in terms of \(Q\)-representation, Int. J. Math. Anal. (Ruse) 7 (2013), no. 64, 3155-3167.
[22] A. Rényi, A new approach to the theory of Engel’s series, Ann. Univ. Sci. Budapest. Sect. Math. 5 (1962), 25-32. · Zbl 0232.10028
[23] R. Salem, On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc. 53 (1943), no. 3, 427-439. · Zbl 0060.13709
[24] W. Sierpiński, Un exemple élémentaire d’une fonction croissante qui a presque partout une dérivée nulle, Giorn. Mat. Battaglini (3) 54 (1916), 314-334. · JFM 46.0403.04
[25] T. Takagi, A simple example of the continuous function without derivative, Tōkyō Sūgaku-Butsurigakkwai Hōkoku 1 (1901), 176-177. · JFM 34.0410.05
[26] A.F. Turbin and M.V. Pratsiovytyi, Fractal sets, functions, and probability distributions, Nauk. Dumka, Kyiv, 1992 (in Russian). · Zbl 0861.28005
[27] W. Wunderlich, Eine überall stetige und nirgends differenzierbare Funktion, Elem. Math. 7 (1952), no. 4, 73-79. · Zbl 0046.28704
[28] T. Zamfirescu, Most monotone functions are singular, Amer. Math. Monthly 88 (1981), no. 1, 47-49. · Zbl 0462.26004
[29] .I. Zhykharyeva and M.V. Pratsiovytyi, Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers, Algebra Discrete Math. 14 (2012), no. 1, 145-160. · Zbl 1307.11087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.