×

A hierarchical framework for statistical model calibration in engineering product development. (English) Zbl 1228.74121

Summary: As the role of computational models has increased, the accuracy of computational results has been of great concern to engineering decision-makers. To address a growing concern about the predictive capability of the computational models, this paper proposes a hierarchical model calibration procedure with a statistical model calibration technique. The procedure consists of two activities: (1) calibration planning (top-down) and (2) calibration execution (bottom-up). In the calibration planning activity, engineers define either physics-of-failure (PoF) mechanisms or system performances of interest. Then, an engineered system can be decomposed into subsystems or components of which computational models are better understood in terms of PoF mechanisms or system performances of interest. The calibration planning activity identifies vital tests and predictive models along with both known and unknown model input \(variable(s)\). The calibration execution activity takes a bottom-up approach, which systematically improves the predictive capability of the computational models from the lowest level to the highest using the statistical calibration technique. This technique compares the observed test results with the predicted results from the computational model. A likelihood function is used for the comparison metric. In the statistical calibration, an optimization technique is integrated with the eigenvector dimension reduction (EDR) method to maximize the likelihood function while determining the unknown model variables. As the predictive capability of a computational model at a lower hierarchy level is improved, this enhanced model can be fused into the model at a higher hierarchical level. The calibration execution activity is then continued for the model at the higher hierarchical level. A cellular phone is used to demonstrate the hierarchical calibration framework of the computational models presented in this paper. It is concluded that the proposed hierarchical model calibration can effectively enhance the ability of the computational model to predict the system reliability of the cellular phone system.

MSC:

74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
74R99 Fracture and damage
Full Text: DOI

References:

[1] Oberkampf, W. L.; Trucano, T. G., Verification and validation in computational fluid dynamics, Prog. Aerospace Sci., 38, 3, 209-272 (2002)
[2] Oberkampf, W. L.; Trucano, T. G.; Hirsch, C., Verification, validation, and predictive capability in computational engineering and physics, Appl. Mech. Rev., 57, 5, 345-384 (2004)
[3] B.H. Thacker, S.W. Doebling, F.M. Hemez, M.C. Anderson, J.E. Pepin, E.A. Rodriguez, Concepts of model verification and validation, LA-14167, Los Alamos National Laboratory, Los Alamos, 2004.; B.H. Thacker, S.W. Doebling, F.M. Hemez, M.C. Anderson, J.E. Pepin, E.A. Rodriguez, Concepts of model verification and validation, LA-14167, Los Alamos National Laboratory, Los Alamos, 2004.
[4] Babuska, I.; Oden, J. T., Verification and validation in computational engineering and science: basic concepts, Comput. Methods Appl. Mech. Engrg., 193, 36-38, 4057-4066 (2004) · Zbl 1198.74126
[5] AIAA, P.T.C., Guide for the verification and validation of computational fluid dynamic simulations, AIAA Guide G-077-98, 1998.; AIAA, P.T.C., Guide for the verification and validation of computational fluid dynamic simulations, AIAA Guide G-077-98, 1998.
[6] ASME, P.T.C., Guide for verification and validation in computational solid mechanics, ASME, New York, 2006.; ASME, P.T.C., Guide for verification and validation in computational solid mechanics, ASME, New York, 2006.
[7] Thacker, B. H.; Anderson, M. C.; Senseny, P. E.; Rodriguez, E. A., The role of nondeterminism in model verification and validation, Int. J. Mater. Prod. Technol., 25, 1, 144-163 (2006)
[8] R.G. Hill, T.G. Trucano, Statistical validation of engineering and scientific models: background, SAND99-1256, Sandia National Laboratories, 1999.; R.G. Hill, T.G. Trucano, Statistical validation of engineering and scientific models: background, SAND99-1256, Sandia National Laboratories, 1999.
[9] Higdon, D.; Nakhleh, C.; Gattiker, J.; Williams, B., A Bayesian calibration approach to the thermal problem, Comput. Methods Appl. Mech. Engrg., 197, 29-32, 2431-2441 (2008) · Zbl 1388.80005
[10] Liu, F.; Bayarri, M. J.; Berger, J. O.; Paulo, R.; Sacks, J., A Bayesian analysis of the thermal challenge problem, Comput. Methods Appl. Mech. Engrg., 197, 29-32, 2457-2466 (2008) · Zbl 1388.80006
[11] McFarland, J.; Mahadevan, S., Multivariate significance testing and model calibration under uncertainty, Comput. Methods Appl. Mech. Engrg., 197, 29-32, 2467-2479 (2008) · Zbl 1239.93121
[12] Xiong, Y.; Chen, W.; Tsui, K.; Apley, D. W., A better understanding of model updating strategies in validating engineering models, Comput. Methods Appl. Mech. Engrg., 198, 15-16, 1327-1337 (2009) · Zbl 1227.74128
[13] Trucano, T. G.; Swiler, L. P.; Igusa, T.; Oberkampf, W. L.; Pilch, M., Calibration, validation, and sensitivity analysis: what’s what, Reliab. Engrg. Syst. Safe., 91, 10-11, 1331-1357 (2006)
[14] Campbell, K., Statistical calibration of computer simulations, Reliab. Engrg. Syst. Safe., 91, 10-11, 1358-1363 (2006)
[15] Kennedy, M. C.; O’Hagan, A., Bayesian calibration of computer models, J. R. Stat. Soc. B, 63, 3, 425-464 (2002) · Zbl 1007.62021
[16] Chen, W.; Tsui, K.; Wang, S., A design-driven validation approach using Bayesian prediction models, J. Mech. Des., 140, 2, 021101 (2008)
[17] Dowding, K. J.; Pilch, M.; Hills, R. G., Formulation of the thermal problem, Comput. Methods Appl. Mech. Engrg., 197, 29-32, 2385-2389 (2008) · Zbl 1138.74020
[18] Rutherford, B. M., Computational modeling issues and methods for the “regulatory problem” in engineering - Solution to the thermal problem, Comput. Methods Appl. Mech. Engrg., 197, 29-32, 2480-2489 (2008) · Zbl 1139.74020
[19] Hill, R. G.; Dowding, K. J., Multivariate approach to the thermal challenge problem, Comput. Methods Appl. Mech. Engrg., 197, 29-32, 2442-2456 (2008) · Zbl 1152.74012
[20] Ferson, S.; Oberkampf, W. L.; Ginzburg, L., Model validation and predictive capability for the thermal challenge problem, Comput. Methods Appl. Mech. Engrg., 197, 29-32, 2408-2430 (2008) · Zbl 1388.74029
[21] Brandyberry, M. D., Thermal problem solution using a surrogate model clustering technique, Comput. Methods Appl. Mech. Engrg., 197, 29-32, 2390-2407 (2008) · Zbl 1158.80327
[22] F. Pan, J. Zhu, A.O. Helminen, R. Vatanparast, Three point bending analysis of a mobile phone using LS-DYNA explicit integration method, in: 9th International LS-DYNA Users Conference, June 4-6, Dearborn, MI, USA, 2006.; F. Pan, J. Zhu, A.O. Helminen, R. Vatanparast, Three point bending analysis of a mobile phone using LS-DYNA explicit integration method, in: 9th International LS-DYNA Users Conference, June 4-6, Dearborn, MI, USA, 2006.
[23] Youn, B. D.; Zhimin, X.; Wang, P., The eigenvector dimension reduction (EDR) method for sensitivity-free uncertainty quantification, Struct. Multidiscip. Optim., 37, 1, 13-28 (2008) · Zbl 1273.74574
[24] Modarres, M.; Kaminskiy, M.; Krivtsov, V., Reliability Engineering and Risk Analysis: A Practical Guide (1999), CRC Press: CRC Press New York
[25] Youn, B. D.; Wang, P., Bayesian reliability-based design optimization using eigenvector dimension reduction (EDR) method, Struct. Multidiscip. Optim., 36, 2, 107-123 (2008)
[26] Rahman, S.; Xu, H., A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics, Probabilist. Engrg. Mech., 19, 4, 393-408 (2004)
[27] Matlab Help Documentation, Matlab 7.5 (R2007b), Optimization Toolbox.; Matlab Help Documentation, Matlab 7.5 (R2007b), Optimization Toolbox.
[28] Buranathiti, T.; Cao, J.; Chen, W.; Baghdasaryan, L.; Xia, Z. C., Approaches for model validation: Methodology and illustration on a sheet metal flanging process, J. Manuf. Sci. Engrg., 128, 2, 588 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.